A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos

  1. Marian Y Hu  Is a corresponding author
  2. Jia-jiun Yan
  3. Inga Petersen
  4. Nina Himmerkus
  5. Markus Bleich
  6. Meike Stumpp
  1. Christian-Albrechts University of Kiel, Germany

Abstract

Efficient pH regulation is a fundamental requisite of all calcifying systems in animals and plants but with the underlying pH regulatory mechanisms remaining largely unknown. Using the sea urchin larva this work identified the SLC4 HCO3- transporter family member SpSlc4a10 to be critically involved in the formation of an elaborate calcitic endoskeleton. SpSlc4a10 is specifically expressed by calcifying primary mesenchyme cells with peak expression during de novo formation of the skeleton. Knock-down of SpSlc4a10 led to pH regulatory defects accompanied by decreased calcification rates and skeleton deformations. Reductions in seawater pH, resembling ocean acidification scenarios, led to an increase in SpSlc4a10 expression suggesting a compensatory mechanism in place to maintain calcification rates. We propose a first pH regulatory and HCO3- concentrating mechanism that is fundamentally linked to the biological precipitation of CaCO3. This knowledge will help understanding biomineralization strategies in animals and their interaction with a changing environment.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Marian Y Hu

    Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
    For correspondence
    m.hu@physiologie.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8914-139X
  2. Jia-jiun Yan

    Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Inga Petersen

    Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Nina Himmerkus

    Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Markus Bleich

    Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Meike Stumpp

    Comparative Immunobiology, Institute of Zoology, Christian-Albrechts University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (Cluster of Excellence CP1519)

  • Marian Y Hu

Deutsche Forschungsgemeinschaft (Cluster of Excellence CP1409)

  • Marian Y Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul G Falkowski, Rutgers University, United States

Version history

  1. Received: March 14, 2018
  2. Accepted: April 30, 2018
  3. Accepted Manuscript published: May 1, 2018 (version 1)
  4. Version of Record published: June 4, 2018 (version 2)

Copyright

© 2018, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,571
    views
  • 244
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marian Y Hu
  2. Jia-jiun Yan
  3. Inga Petersen
  4. Nina Himmerkus
  5. Markus Bleich
  6. Meike Stumpp
(2018)
A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos
eLife 7:e36600.
https://doi.org/10.7554/eLife.36600

Share this article

https://doi.org/10.7554/eLife.36600

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.