Strong biomechanical relationships bias the tempo and mode of morphological evolution

  1. Martha M Muñoz  Is a corresponding author
  2. Yinan Hu
  3. Philip SL Anderson
  4. S N Patek  Is a corresponding author
  1. Virginia Tech, United States
  2. University of Rhode Island, United States
  3. University of Illinois, Urbana Champaign, United States
  4. Duke University, United States

Abstract

The influence of biomechanics on the tempo and mode of morphological evolution is unresolved, yet is fundamental to organismal diversification. Across multiple four-bar linkage systems in animals, we discovered that rapid morphological evolution (tempo) is associated with mechanical sensitivity (strong correlation between a mechanical system's output and one or more of its components). Mechanical sensitivity is explained by size: the smallest link(s) are disproportionately affected by length changes and most strongly influence mechanical output. Rate of evolutionary change (tempo) is greatest in the smallest links and trait shifts across phylogeny (mode) occur exclusively via the influential, small links. Our findings illuminate the paradigms of many-to-one mapping, mechanical sensitivity, and constraints: tempo and mode are dominated by strong correlations that exemplify mechanical sensitivity, even in linkage systems known for exhibiting many-to-one mapping. Amidst myriad influences, mechanical sensitivity imparts distinct, predictable footprints on morphological diversity.

Data availability

All datasets and phylogenies are included in full in the supplementary materials. Citations to the original papers containing these datasets and phylogenies are included with the supplementary files.

Article and author information

Author details

  1. Martha M Muñoz

    Department of Biological Sciences, Virginia Tech, Blacksburg, United States
    For correspondence
    mmunoz5@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Yinan Hu

    Department of Biological Sciences, University of Rhode Island, Kingston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9304-519X
  3. Philip SL Anderson

    Department of Animal Biology, University of Illinois, Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. S N Patek

    Department of Biology, Duke University, Durham, United States
    For correspondence
    snp2@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9738-882X

Funding

National Science Foundation (1439850)

  • S N Patek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Muñoz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,437
    views
  • 337
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martha M Muñoz
  2. Yinan Hu
  3. Philip SL Anderson
  4. S N Patek
(2018)
Strong biomechanical relationships bias the tempo and mode of morphological evolution
eLife 7:e37621.
https://doi.org/10.7554/eLife.37621

Share this article

https://doi.org/10.7554/eLife.37621

Further reading

    1. Ecology
    Cody A Freas, Ajay Narenda ... Ken Cheng
    Research Article

    For the first time in any animal, we show that nocturnal bull ants use the exceedingly dim polarisation pattern produced by the moon for overnight navigation. The sun or moon can provide directional information via their position; however, they can often be obstructed by clouds, canopy, or the horizon. Despite being hidden, these bodies can still provide compass information through the polarised light pattern they produce/reflect. Sunlight produces polarised light patterns across the overhead sky as it enters the atmosphere, and solar polarised light is a well-known compass cue for navigating animals. Moonlight produces an analogous pattern, albeit a million times dimmer than sunlight. Here, we show evidence that polarised moonlight forms part of the celestial compass of navigating nocturnal ants. Nocturnal bull ants leave their nest at twilight and rely heavily on the overhead solar polarisation pattern to navigate. Yet many foragers return home overnight when the sun cannot guide them. We demonstrate that these bull ants use polarised moonlight to navigate home during the night, by rotating the overhead polarisation pattern above homing ants, who alter their headings in response. Furthermore, these ants can detect this cue throughout the lunar month, even under crescent moons, when polarised light levels are at their lowest. Finally, we show the long-term incorporation of this moonlight pattern into the ants’ path integration system throughout the night for homing, as polarised sunlight is incorporated throughout the day.

    1. Ecology
    Juan Liu, Morgan W Tingley ... Xingfeng Si
    Research Article

    Climatic warming can shift community composition driven by the colonization-extinction dynamics of species with different thermal preferences; but simultaneously, habitat fragmentation can mediate species’ responses to warming. As this potential interactive effect has proven difficult to test empirically, we collected data on birds over 10 years of climate warming in a reservoir subtropical island system that was formed 65 years ago. We investigated how the mechanisms underlying climate-driven directional change in community composition were mediated by habitat fragmentation. We found thermophilization driven by increasing warm-adapted species and decreasing cold-adapted species in terms of trends in colonization rate, extinction rate, occupancy rate and population size. Critically, colonization rates of warm-adapted species increased faster temporally on smaller or less isolated islands; cold-adapted species generally were lost more quickly temporally on closer islands. This provides support for dispersal limitation and microclimate buffering as primary proxies by which habitat fragmentation mediates species range shift. Overall, this study advances our understanding of biodiversity responses to interacting global change drivers.