Comment on 'Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol'

  1. Kevin C Courtney
  2. Karen YY Fung
  3. Frederick R Maxfield
  4. Gregory D Fairn  Is a corresponding author
  5. Xiaohui Zha  Is a corresponding author
  1. University of Ottawa, Canada
  2. St Michael's Hospital, Canada
  3. Weill Cornell Medical College, United States

Abstract

The plasma membrane in mammalian cells is rich in cholesterol. How cholesterol partitions between the two leaflets of the plasma membrane remains a matter of debate. Recently, Liu et al used domain 4 (D4) of perfringolysin O as a cholesterol sensor to argue that cholesterol is mostly in the exofacial leaflet (Liu et al., 2017). This conclusion was made by interpreting D4 binding in live cells using in vitro calibrations with liposomes. However, liposomes may be unfaithful in mimicking the plasma membrane, as we demonstrate here. Also, D4 binding is highly sensitive to the presence of cytosolic proteins. In addition, we find that a D4 variant, that requires >35 mol% cholesterol to bind to liposomes in vitro, does in fact bind to the cytoplasmic leaflet of the plasma membrane in a cholesterol-dependent manner. Thus, we believe, based on the current evidence, that it is unlikely that there is a significantly higher proportion of cholesterol in the exofacial leaflet of the plasma membrane compared to the cytosolic leaflet.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Kevin C Courtney

    Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Karen YY Fung

    Keenan Research Centre, St Michael's Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Frederick R Maxfield

    Department of Biochemistry, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4396-8866
  4. Gregory D Fairn

    Keenan Research Centre, St Michael's Hospital, Toronto, Canada
    For correspondence
    fairng@smh.ca
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaohui Zha

    Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
    For correspondence
    xzha@ohri.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2873-3073

Funding

Canadian Institutes of Health Research (Operating Grant MOP-130453)

  • Xiaohui Zha

Natural Sciences and Engineering Research Council of Canada (Discovery Grant RGPIN 40210-2013)

  • Xiaohui Zha

National Institutes of Health (R01 GM123462)

  • Frederick R Maxfield

Canadian Institutes of Health Research (MOP-133656)

  • Gregory D Fairn

The authors declare that there was no funding for this work

Copyright

© 2018, Courtney et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,277
    views
  • 386
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin C Courtney
  2. Karen YY Fung
  3. Frederick R Maxfield
  4. Gregory D Fairn
  5. Xiaohui Zha
(2018)
Comment on 'Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol'
eLife 7:e38493.
https://doi.org/10.7554/eLife.38493

Share this article

https://doi.org/10.7554/eLife.38493

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.