Comment on 'Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol'

  1. Kevin C Courtney
  2. Karen YY Fung
  3. Frederick R Maxfield
  4. Gregory D Fairn  Is a corresponding author
  5. Xiaohui Zha  Is a corresponding author
  1. University of Ottawa, Canada
  2. St Michael's Hospital, Canada
  3. Weill Cornell Medical College, United States

Abstract

The plasma membrane in mammalian cells is rich in cholesterol. How cholesterol partitions between the two leaflets of the plasma membrane remains a matter of debate. Recently, Liu et al used domain 4 (D4) of perfringolysin O as a cholesterol sensor to argue that cholesterol is mostly in the exofacial leaflet (Liu et al., 2017). This conclusion was made by interpreting D4 binding in live cells using in vitro calibrations with liposomes. However, liposomes may be unfaithful in mimicking the plasma membrane, as we demonstrate here. Also, D4 binding is highly sensitive to the presence of cytosolic proteins. In addition, we find that a D4 variant, that requires >35 mol% cholesterol to bind to liposomes in vitro, does in fact bind to the cytoplasmic leaflet of the plasma membrane in a cholesterol-dependent manner. Thus, we believe, based on the current evidence, that it is unlikely that there is a significantly higher proportion of cholesterol in the exofacial leaflet of the plasma membrane compared to the cytosolic leaflet.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Kevin C Courtney

    Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Karen YY Fung

    Keenan Research Centre, St Michael's Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Frederick R Maxfield

    Department of Biochemistry, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4396-8866
  4. Gregory D Fairn

    Keenan Research Centre, St Michael's Hospital, Toronto, Canada
    For correspondence
    fairng@smh.ca
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaohui Zha

    Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
    For correspondence
    xzha@ohri.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2873-3073

Funding

Canadian Institutes of Health Research (Operating Grant MOP-130453)

  • Xiaohui Zha

Natural Sciences and Engineering Research Council of Canada (Discovery Grant RGPIN 40210-2013)

  • Xiaohui Zha

National Institutes of Health (R01 GM123462)

  • Frederick R Maxfield

Canadian Institutes of Health Research (MOP-133656)

  • Gregory D Fairn

The authors declare that there was no funding for this work

Copyright

© 2018, Courtney et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,290
    views
  • 389
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin C Courtney
  2. Karen YY Fung
  3. Frederick R Maxfield
  4. Gregory D Fairn
  5. Xiaohui Zha
(2018)
Comment on 'Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol'
eLife 7:e38493.
https://doi.org/10.7554/eLife.38493

Share this article

https://doi.org/10.7554/eLife.38493

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.