Plant diversity maintains multiple soil functions in future environments

  1. Nico Eisenhauer  Is a corresponding author
  2. Jes Hines
  3. Forest Isbell
  4. Fons van der Plas
  5. Sarah E Hobbie
  6. Clare E Kazanski
  7. Annika Lehmann
  8. Mengyun Liu
  9. Alfred Lochner
  10. Matthias C Rillig
  11. Anja Vogel
  12. Kally Worm
  13. Peter B Reich
  1. Leipzig University, Germany
  2. University of Minnesota, United States
  3. Freie Universität Berlin, Germany
  4. Chinese Academy of Sciences, China

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nico Eisenhauer
  2. Jes Hines
  3. Forest Isbell
  4. Fons van der Plas
  5. Sarah E Hobbie
  6. Clare E Kazanski
  7. Annika Lehmann
  8. Mengyun Liu
  9. Alfred Lochner
  10. Matthias C Rillig
  11. Anja Vogel
  12. Kally Worm
  13. Peter B Reich
(2018)
Plant diversity maintains multiple soil functions in future environments
eLife 7:e41228.
https://doi.org/10.7554/eLife.41228

Share this article

https://doi.org/10.7554/eLife.41228