The cuticular hydrocarbon profiles of honey bee workers develop via a socially-modulated innate process

  1. Cassondra L Vernier
  2. Joshua J Krupp
  3. Katelyn Marcus
  4. Abraham Hefetz
  5. Joel D Levine
  6. Yehuda Ben-Shahar  Is a corresponding author
  1. Washington University in St Louis, United States
  2. University of Toronto Mississauga, Canada
  3. Tel Aviv University, Israel

Abstract

Large social insect colonies exhibit a remarkable ability for recognizing group members via colony-specific cuticular pheromonal signatures. Previous work suggested that in some ant species, colony-specific pheromonal profiles are generated through a mechanism involving the transfer and homogenization of cuticular hydrocarbons (CHCs) across members of the colony. However, how colony-specific chemical profiles are generated in other social insect clades remains mostly unknown. Here we show that in the honey bee (Apis mellifera), the colony-specific CHC profile completes its maturation in foragers via a sequence of stereotypic age-dependent quantitative and qualitative chemical transitions, which are driven by environmentally-sensitive intrinsic biosynthetic pathways. Therefore, the CHC profiles of individual honey bees are not likely produced through homogenization and transfer mechanisms, but instead mature in association with age-dependent division of labor. Furthermore, non-nestmate rejection behaviors seem to be contextually restricted to behavioral interactions between entering foragers and guards at the hive entrance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All CHC chemical data are included in the data source files.

Article and author information

Author details

  1. Cassondra L Vernier

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua J Krupp

    Department of Biology, University of Toronto Mississauga, Mississauga, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Katelyn Marcus

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Abraham Hefetz

    Department of Zoology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9678-9429
  5. Joel D Levine

    Department of Biology, University of Toronto Mississauga, Mississauga, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6254-6274
  6. Yehuda Ben-Shahar

    Department of Biology, Washington University in St Louis, St Louis, United States
    For correspondence
    benshahary@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-2926

Funding

National Science Foundation (1545778)

  • Yehuda Ben-Shahar

National Science Foundation (1707221)

  • Yehuda Ben-Shahar

National Science Foundation (1754264)

  • Yehuda Ben-Shahar

Natural Sciences and Engineering Research Council of Canada

  • Joel D Levine

Canadian Institutes of Health Research

  • Joshua J Krupp
  • Joel D Levine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Scott, University of California, Berkeley, United States

Version history

  1. Received: September 9, 2018
  2. Accepted: January 31, 2019
  3. Accepted Manuscript published: February 5, 2019 (version 1)
  4. Version of Record published: February 20, 2019 (version 2)

Copyright

© 2019, Vernier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,460
    views
  • 415
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cassondra L Vernier
  2. Joshua J Krupp
  3. Katelyn Marcus
  4. Abraham Hefetz
  5. Joel D Levine
  6. Yehuda Ben-Shahar
(2019)
The cuticular hydrocarbon profiles of honey bee workers develop via a socially-modulated innate process
eLife 8:e41855.
https://doi.org/10.7554/eLife.41855

Share this article

https://doi.org/10.7554/eLife.41855

Further reading

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.

    1. Ecology
    Lan Pang, Gangqi Fang ... Jianhua Huang
    Research Article

    The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell—teratocytes—that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.