Linking spatial patterns of terrestrial herbivore community structure to trophic interactions

  1. Jakub Witold Bubnicki  Is a corresponding author
  2. Marcin Churski
  3. Krzysztof Schmidt
  4. Tom A Diserens
  5. Dries PJ Kuijper
  1. Mammal Research Institute, Polish Academy of Sciences, Poland

Abstract

Large herbivores influence ecosystem functioning via their effects on vegetation at different spatial scales. It is often overlooked that the spatial distribution of large herbivores result from their responses to interacting top-down and bottom-up ecological gradients that create landscape-scale variation in the structure of the entire community. We studied the complexity of these cascading interactions using high-resolution camera trapping and remote sensing data in the best-preserved European lowland forest, Białowieża Forest, Poland. We showed that the variation in spatial distribution of an entire community of large herbivores is explained by species-specific responses to both environmental bottom-up and biotic top-down factors in combination with human-induced (cascading) effects. We decomposed the spatial variation in herbivore community structure and identified functionally distinct landscape-scale herbivory regimes ('herbiscapes') which are predicted to occur in a variety of ecosystems and could be an important mechanism creating spatial variation in herbivory maintaining vegetation heterogeneity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The source code of our analyses together with the source data files are avauilable in our github repository: https://github.com/mripasteam/herbiscapes/.

Article and author information

Author details

  1. Jakub Witold Bubnicki

    Population Ecology, Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
    For correspondence
    kbubnicki@ibs.bialowieza.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2064-3113
  2. Marcin Churski

    Population Ecology, Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
    Competing interests
    The authors declare that no competing interests exist.
  3. Krzysztof Schmidt

    Population Ecology, Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9043-291X
  4. Tom A Diserens

    Population Ecology, Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
    Competing interests
    The authors declare that no competing interests exist.
  5. Dries PJ Kuijper

    Population Ecology, Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Center, Poland (2012/07/N/NZ8/02651)

  • Jakub Witold Bubnicki

National Science Center, Poland (2015/17/B/NZ8/02403)

  • Dries PJ Kuijper

EURONATUR (PL-15-500-28)

  • Krzysztof Schmidt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Bubnicki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,625
    views
  • 478
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jakub Witold Bubnicki
  2. Marcin Churski
  3. Krzysztof Schmidt
  4. Tom A Diserens
  5. Dries PJ Kuijper
(2019)
Linking spatial patterns of terrestrial herbivore community structure to trophic interactions
eLife 8:e44937.
https://doi.org/10.7554/eLife.44937

Share this article

https://doi.org/10.7554/eLife.44937

Further reading

    1. Ecology
    Ming-Qiang Wang, Shi-Kun Guo ... Chao-Dong Zhu
    Research Article

    Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.