Kairomones: Finding the fish factor

The water flea Daphnia moves to deeper waters to avoid predators when it detects a chemical produced by fish.
  1. Georg Pohnert  Is a corresponding author
  1. Friedrich Schiller University Jena, Germany
  2. Max Planck Institute for Chemical Ecology, Germany

In a very simplified version of the food chain found in lakes, microalgae are eaten by water fleas called Daphnia, which are in turn eaten by fish. But things get complicated very quickly if observed in more detail. Algae release toxins to defend themselves, and form long chains to evade predators (Van Donk et al., 2011), while Daphnia can change shape or move to avoid being eaten by fish.

One way that Daphnia and other members of the zooplankton avoid predators is by moving to different depths of the lake depending on the time of day, a strategy known as diel vertical migration. If the surrounding water contains fish, Daphnia move to darker, deeper regions during the day, so that the fish cannot see them (Figure 1), and move to the upper layers of the water column – where the microalgae live – at night. If there are not many fish in the vicinity, Daphnia stay near the surface during the day as well (Lampert, 1989).

Daphnia water fleas change their behavior if fish are present.

Left: During the day Daphnia migrate to deeper, darker regions of the lake if they detect chemical signals called kairomones (not shown) that are released by fish. Middle: At night, when fish cannot see them, Daphnia move up to the water near the surface to eat the microalgae (green circles) that are plentiful there. Right: When no fish are present, there are no kairomones to detect, and Daphnia stay near the surface day and night.

Prey species must balance their resources carefully. Unnecessarily avoiding predators costs energy and can restrict access to food – the microalgae eaten by Daphnia do not live in the dark depths of the lake – but accidentally encountering a predator can be fatal. As a result, some species have adapted to detect chemicals released by predators. The identification of several of these chemicals, called kairomones, has opened up new areas of research in aquatic ecology, conservation and aquaculture (Yasumoto et al., 2005; Selander et al., 2015; Weiss et al., 2018).

The search for the kairomone that induces diel vertical migration, also known as the ‘fish factor’, has been ongoing for decades, with spectacular failures and misinterpretations on the way (see Pohnert and von Elert, 2000 for a discussion). Numerous obstacles have complicated the search: the fish factor occurs in low concentrations in lake water, and bioassay experiments that could identify it are problematic because it is difficult to monitor the vertical movement of Daphnia in a laboratory setting. Now, in eLife, Meike Hahn, Christoph Effertz, Laurent Bigler and Eric von Elert report the identity of this kairomone (Hahn et al., 2019).

Hahn et al. – who are based at the University of Cologne and the University of Zurich – used a bioassay-guided fractionation method to identify the fish factor. A technique called High Performance Liquid Chromatography allowed water in which fish had previously been incubated to be separated into ‘fractions’ that each contained a subset of chemicals. Examining the effect of each fraction on the migration behavior of Daphnia revealed one that induced diel vertical migration even though fish were not present. Hahn et al. identified the active chemical as 5α-cyprinol sulfate. Only picomolar concentrations of this compound are found in water inhabited by fish, but even these low concentrations are sufficient to change the migration behavior of Daphnia.

Since the release of kairomones places predator species at a disadvantage, a prey species can only rely on them if the predator cannot shut down the production of the molecule. This is the case for 5α-cyprinol sulfate, which is a bile acid that plays an essential role in digesting dietary fats (Hofmann et al., 2010). The fish release 5α-cyprinol sulfate from their intestine, gills, and the urinary tract. As this molecule is also stable in water, it reliably indicates the presence of fish to Daphnia.

Besides the many implications for basic research, the finding that only picomolar amounts of a compound can trigger widespread behavioral responses in a lake also raises ecotoxicological concerns. While we survey our waters for metabolites that cause immediate toxicity, we completely ignore the fact that non-toxic doses of such highly potent signaling chemicals can also have a substantial effect on an ecosystem. This calls for a new evaluation of the routine procedures used in environmental monitoring.

Kairomones are not the only chemical signals used by the species that inhabit lakes. Pheromones (Frenkel et al., 2014), defense metabolites and molecules that help species to outcompete each other also contribute to the intricate signaling mechanisms in aquatic ecosystems (Berry et al., 2008). We can conclude that these environments are really shaped by a diverse chemical landscape, a language of life that we are only just beginning to understand.

References

Article and author information

Author details

  1. Georg Pohnert

    Georg Pohnert is at the Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, and the Max Planck Institute for Chemical Ecology, Jena, Germany

    For correspondence
    Georg.Pohnert@uni-jena.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2351-6336

Publication history

  1. Version of Record published: June 11, 2019 (version 1)

Copyright

© 2019, Pohnert

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,792
    views
  • 123
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georg Pohnert
(2019)
Kairomones: Finding the fish factor
eLife 8:e48459.
https://doi.org/10.7554/eLife.48459
  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.