Modelling the climatic suitability of Chagas disease vectors on a global scale

  1. Fanny E Eberhard  Is a corresponding author
  2. Sarah Cunze
  3. Judith Kochmann
  4. Sven Klimpel
  1. Goethe University Frankfurt, Germany

Abstract

The Triatominae are a vector species for Trypanosoma cruzi, the aetiological agent of the neglected tropical Chagas disease. Their distribution stretches across Latin America, with some species occurring outside of the Americas. In particular, the cosmopolitan vector, Triatoma rubrofasciata, has already been detected in many Asian and African countries. We applied an ensemble forecasting niche modelling approach to project the climatic suitability of 11 triatomine species under current climate conditions on a global scale. Our results revealed potential hotspots of triatomine species diversity in tropical and subtropical regions between 21°N and 24°S latitude. We also determined the climatic suitability of two temperate species (T. infestans, T. sordida) in Europe, western Australia and New Zealand. Triatoma rubrofasciata has been projected to find climatically suitable conditions in large parts of coastal areas throughout Latin America, Africa and Southeast Asia, emphasising the importance of an international vector surveillance program in these regions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Fanny E Eberhard

    Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
    For correspondence
    Eberhard@bio.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4947-3867
  2. Sarah Cunze

    Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Judith Kochmann

    Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sven Klimpel

    Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Reviewing Editor

  1. Anna Akhmanova, Utrecht University, Netherlands

Version history

  1. Received: September 20, 2019
  2. Accepted: May 5, 2020
  3. Accepted Manuscript published: May 6, 2020 (version 1)
  4. Version of Record published: May 19, 2020 (version 2)

Copyright

© 2020, Eberhard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,372
    Page views
  • 287
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fanny E Eberhard
  2. Sarah Cunze
  3. Judith Kochmann
  4. Sven Klimpel
(2020)
Modelling the climatic suitability of Chagas disease vectors on a global scale
eLife 9:e52072.
https://doi.org/10.7554/eLife.52072

Share this article

https://doi.org/10.7554/eLife.52072

Further reading

    1. Ecology
    2. Plant Biology
    Jamie Mitchel Waterman, Tristan Michael Cofer ... Matthias Erb
    Research Article

    Volatiles emitted by herbivore-attacked plants (senders) can enhance defenses in neighboring plants (receivers), however, the temporal dynamics of this phenomenon remain poorly studied. Using a custom-built, high-throughput proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) system, we explored temporal patterns of volatile transfer and responses between herbivore-attacked and undamaged maize plants. We found that continuous exposure to natural blends of herbivore-induced volatiles results in clocked temporal response patterns in neighboring plants, characterized by an induced terpene burst at the onset of the second day of exposure. This delayed burst is not explained by terpene accumulation during the night, but coincides with delayed jasmonate accumulation in receiver plants. The delayed burst occurs independent of day:night light transitions and cannot be fully explained by sender volatile dynamics. Instead, it is the result of a stress memory from volatile exposure during the first day and secondary exposure to bioactive volatiles on the second day. Our study reveals that prolonged exposure to natural blends of stress-induced volatiles results in a response that integrates priming and direct induction into a distinct and predictable temporal response pattern. This provides an answer to the long-standing question of whether stress volatiles predominantly induce or prime plant defenses in neighboring plants, by revealing that they can do both in sequence.

    1. Ecology
    Congnan Sun, Yoel Hassin ... Yossi Yovel
    Research Article

    Covid-19 lockdowns provided ecologists with a rare opportunity to examine how animals behave when humans are absent. Indeed many studies reported various effects of lockdowns on animal activity, especially in urban areas and other human-dominated habitats. We explored how Covid-19 lockdowns in Israel have influenced bird activity in an urban environment by using continuous acoustic recordings to monitor three common bird species that differ in their level of adaptation to the urban ecosystem: (1) the hooded crow, an urban exploiter, which depends heavily on anthropogenic resources; (2) the rose-ringed parakeet, an invasive alien species that has adapted to exploit human resources; and (3) the graceful prinia, an urban adapter, which is relatively shy of humans and can be found in urban habitats with shrubs and prairies. Acoustic recordings provided continuous monitoring of bird activity without an effect of the observer on the animal. We performed dense sampling of a 1.3 square km area in northern Tel-Aviv by placing 17 recorders for more than a month in different micro-habitats within this region including roads, residential areas and urban parks. We monitored both lockdown and no-lockdown periods. We portray a complex dynamic system where the activity of specific bird species depended on many environmental parameters and decreases or increases in a habitat-dependent manner during lockdown. Specifically, urban exploiter species decreased their activity in most urban habitats during lockdown, while human adapter species increased their activity during lockdown especially in parks where humans were absent. Our results also demonstrate the value of different habitats within urban environments for animal activity, specifically highlighting the importance of urban parks. These species- and habitat-specific changes in activity might explain the contradicting results reported by others who have not performed a habitat specific analysis.