1. Ecology
Download icon

A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles

  1. Rui-Ting Li
  2. Ling-Qiao Huang
  3. Jun-Feng Dong
  4. Chen-Zhu Wang  Is a corresponding author
  1. Institute of Zoology, Chinese Academy of Sciences, China
  2. Henan University of Science and Technology, China
Research Article
  • Cited 2
  • Views 2,111
  • Annotations
Cite this article as: eLife 2020;9:e53706 doi: 10.7554/eLife.53706

Abstract

Antennae are often considered to be the nostrils of insects. Here, we sequenced the transcriptome of the pheromone gland-ovipositor complex of Helicoverpa assulta and discovered that an odorant receptor (OR) gene, HassOR31, had much higher expression in the ovipositor than in antennae or other tissues. To determine whether the ovipositor was involved in odorant detection, we co-expressed HassOR31 and its co-receptor, HassORco, in a Xenopus oocyte model system, and demonstrated that the OR was responsive to 12 plant odorants, especially Z-3-hexenyl butyrate. These odorants elicited electrophysiological responses of some sensilla in the ovipositor, and HassOR31 and HassORco were co-expressed within ovipositor sensilla. Two oviposition preference experiments showed that female moths lacking antennae still preferentially selected oviposition sites containing plant volatiles. We suggest that the expression of HassOR31 in the ovipositor of H. assulta helps females to determine precise egg-laying sites in host plants.

Data availability

Sequencing data been uploaded to SRA database under PRJNA592822.

The following data sets were generated

Article and author information

Author details

  1. Rui-Ting Li

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ling-Qiao Huang

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun-Feng Dong

    Forestry College, Henan University of Science and Technology, Luoyang, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chen-Zhu Wang

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    czwang@ioz.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0418-8621

Funding

National Natural Science Foundation of China (31830088)

  • Chen-Zhu Wang

National Natural Science Foundation of China (31772528)

  • Chen-Zhu Wang

National Key R&D Program of China (2017YFD0200400)

  • Chen-Zhu Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures in this study were approved by the Animal Care and Use Committee of the Institute of Zoology, Chinese Academy of Sciences for the care and use of laboratory animals (protocol number IOZ17090-A). The surgery was performed following the protocols reported by Nakagawa and Touhara (2013). The Xenopus laevis was anesthetized by bathed in the mixture of ice and water in 30 min, the wounds were carefully treated to avoid infection. Every effort was made to minimize suffering.

Reviewing Editor

  1. Marcel Dicke, Wageningen University, Netherlands

Publication history

  1. Received: November 18, 2019
  2. Accepted: May 20, 2020
  3. Accepted Manuscript published: May 21, 2020 (version 1)
  4. Version of Record published: June 22, 2020 (version 2)

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,111
    Page views
  • 501
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Jakob Thyrring, Lloyd S Peck
    Research Article Updated

    Whether global latitudinal diversity gradients exist in rocky intertidal α-diversity and across functional groups remains unknown. Using literature data from 433 intertidal sites, we investigated α-diversity patterns across 155° of latitude, and whether local-scale or global-scale structuring processes control α-diversity. We, furthermore, investigated how the relative composition of functional groups changes with latitude. α-Diversity differed among hemispheres with a mid-latitudinal peak in the north, and a non-significant unimodal pattern in the south, but there was no support for a tropical-to-polar decrease in α-diversity. Although global-scale drivers had no discernible effect, the local-scale drivers significantly affected α-diversity, and our results reveal that latitudinal diversity gradients are outweighed by local processes. In contrast to α-diversity patterns, species richness of three functional groups (predators, grazers, and suspension feeders) declined with latitude, coinciding with an inverse gradient in algae. Polar and tropical intertidal data were sparse, and more sampling is required to improve knowledge of marine biodiversity.

    1. Ecology
    2. Evolutionary Biology
    Aspen T Reese et al.
    Research Article

    Domesticated animals experienced profound changes in diet, environment, and social interactions that likely shaped their gut microbiota and were potentially analogous to ecological changes experienced by humans during industrialization. Comparing the gut microbiota of wild and domesticated mammals plus chimpanzees and humans, we found a strong signal of domestication in overall gut microbial community composition and similar changes in composition with domestication and industrialization. Reciprocal diet switches within mouse and canid dyads demonstrated the critical role of diet in shaping the domesticated gut microbiota. Notably, we succeeded in recovering wild-like microbiota in domesticated mice through experimental colonization. Although fundamentally different processes, we conclude that domestication and industrialization have impacted the gut microbiota in related ways, likely through shared ecological change. Our findings highlight the utility, and limitations, of domesticated animal models for human research and the importance of studying wild animals and non-industrialized humans for interrogating signals of host–microbial coevolution.