Antagonistic Effects of Intraspecific Cooperation and Interspecific Competition on Thermal Performance

  1. Hsiang-Yu Tsai
  2. Dustin Reid Rubenstein
  3. Bo-Fei Chen
  4. Mark Liu
  5. Shih-Fan Chan
  6. De-Pei Chen
  7. Syuan-Jyun Sun
  8. Tzu-Neng Yuan
  9. Sheng-Feng Shen  Is a corresponding author
  1. Biodiversity Research Center, Academia Sinica, Taiwan, Republic of China
  2. Columbia University, United States
  3. Biodiversity Research Center, Academia Sinica, Taiwan

Abstract

Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species' optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change.

Data availability

All data analysed during the study are available in Dryad.

The following data sets were generated
    1. Shen
    2. Sheng-Feng et al
    (2020) Source data for empirical experiments
    Dryad Digital Repository, doi.org/10.5061/dryad.w0vt4b8nw.

Article and author information

Author details

  1. Hsiang-Yu Tsai

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Dustin Reid Rubenstein

    Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo-Fei Chen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3005-8724
  4. Mark Liu

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shih-Fan Chan

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. De-Pei Chen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Syuan-Jyun Sun

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  8. Tzu-Neng Yuan

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  9. Sheng-Feng Shen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    shensf@sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0631-6343

Funding

Ministry of Science and Technology, Taiwan (103-2621-B-001 -003 -MY3)

  • Sheng-Feng Shen

National Science Foundation (IOS-1656098)

  • Dustin Reid Rubenstein

Ministry of Science and Technology, Taiwan (101-2313-B-001 -008 -MY3)

  • Sheng-Feng Shen

Academia Sinica (AS-SS-106-05)

  • Sheng-Feng Shen

Academia Sinica (AS-IA-106-L01)

  • Sheng-Feng Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,221
    views
  • 207
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.57022

Further reading

    1. Ecology
    Laura Fargeot, Camille Poesy ... Blanchet Simon
    Research Article

    Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels – primary producers, primary consumers, and secondary consumers – in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity – gauged within three pivotal species – within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.