Antagonistic Effects of Intraspecific Cooperation and Interspecific Competition on Thermal Performance

  1. Hsiang-Yu Tsai
  2. Dustin Reid Rubenstein
  3. Bo-Fei Chen
  4. Mark Liu
  5. Shih-Fan Chan
  6. De-Pei Chen
  7. Syuan-Jyun Sun
  8. Tzu-Neng Yuan
  9. Sheng-Feng Shen  Is a corresponding author
  1. Biodiversity Research Center, Academia Sinica, Taiwan, Republic of China
  2. Columbia University, United States
  3. Biodiversity Research Center, Academia Sinica, Taiwan

Abstract

Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species' optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change.

Data availability

All data analysed during the study are available in Dryad.

The following data sets were generated
    1. Shen
    2. Sheng-Feng et al
    (2020) Source data for empirical experiments
    Dryad Digital Repository, doi.org/10.5061/dryad.w0vt4b8nw.

Article and author information

Author details

  1. Hsiang-Yu Tsai

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Dustin Reid Rubenstein

    Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo-Fei Chen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3005-8724
  4. Mark Liu

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shih-Fan Chan

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. De-Pei Chen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Syuan-Jyun Sun

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  8. Tzu-Neng Yuan

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  9. Sheng-Feng Shen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    shensf@sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0631-6343

Funding

Ministry of Science and Technology, Taiwan (103-2621-B-001 -003 -MY3)

  • Sheng-Feng Shen

National Science Foundation (IOS-1656098)

  • Dustin Reid Rubenstein

Ministry of Science and Technology, Taiwan (101-2313-B-001 -008 -MY3)

  • Sheng-Feng Shen

Academia Sinica (AS-SS-106-05)

  • Sheng-Feng Shen

Academia Sinica (AS-IA-106-L01)

  • Sheng-Feng Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,093
    views
  • 191
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hsiang-Yu Tsai
  2. Dustin Reid Rubenstein
  3. Bo-Fei Chen
  4. Mark Liu
  5. Shih-Fan Chan
  6. De-Pei Chen
  7. Syuan-Jyun Sun
  8. Tzu-Neng Yuan
  9. Sheng-Feng Shen
(2020)
Antagonistic Effects of Intraspecific Cooperation and Interspecific Competition on Thermal Performance
eLife 9:e57022.
https://doi.org/10.7554/eLife.57022

Share this article

https://doi.org/10.7554/eLife.57022

Further reading

    1. Ecology
    Chao Wen, Yuyi Lu ... Lars Chittka
    Research Article

    Bumblebees (Bombus terrestris) have been shown to engage in string-pulling behavior to access rewards. The objective of this study was to elucidate whether bumblebees display means-end comprehension in a string-pulling task. We presented bumblebees with two options: one where a string was connected to an artificial flower containing a reward and the other presenting an interrupted string. Bumblebees displayed a consistent preference for pulling connected strings over interrupted ones after training with a stepwise pulling technique. When exposed to novel string colors, bees continued to exhibit a bias towards pulling the connected string. This suggests that bumblebees engage in featural generalization of the visual display of the string connected to the flower in this task. If the view of the string connected to the flower was restricted during the training phase, the proportion of bumblebees choosing the connected strings significantly decreased. Similarly, when the bumblebees were confronted with coiled connected strings during the testing phase, they failed to identify and reject the interrupted strings. This finding underscores the significance of visual consistency in enabling the bumblebees to perform the task successfully. Our results suggest that bumblebees’ ability to distinguish between continuous strings and interrupted strings relies on a combination of image matching and associative learning, rather than means-end understanding. These insights contribute to a deeper understanding of the cognitive processes employed by bumblebees when tackling complex spatial tasks.

    1. Ecology
    Mathilde Delacoux, Fumihiro Kano
    Research Article

    During collective vigilance, it is commonly assumed that individual animals compromise their feeding time to be vigilant against predators, benefiting the entire group. One notable issue with this assumption concerns the unclear nature of predator ‘detection’, particularly in terms of vision. It remains uncertain how a vigilant individual utilizes its high-acuity vision (such as the fovea) to detect a predator cue and subsequently guide individual and collective escape responses. Using fine-scale motion-capture technologies, we tracked the head and body orientations of pigeons (hence reconstructed their visual fields and foveal projections) foraging in a flock during simulated predator attacks. Pigeons used their fovea to inspect predator cues. Earlier foveation on a predator cue was linked to preceding behaviors related to vigilance and feeding, such as head-up or down positions, head-scanning, and food-pecking. Moreover, earlier foveation predicted earlier evasion flights at both the individual and collective levels. However, we also found that relatively long delay between their foveation and escape responses in individuals obscured the relationship between these two responses. While our results largely support the existing assumptions about vigilance, they also underscore the importance of considering vision and addressing the disparity between detection and escape responses in future research.