Antagonistic Effects of Intraspecific Cooperation and Interspecific Competition on Thermal Performance
Abstract
Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species' optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change.
Data availability
All data analysed during the study are available in Dryad.
-
Source data for empirical experimentsDryad Digital Repository, doi.org/10.5061/dryad.w0vt4b8nw.
Article and author information
Author details
Funding
Ministry of Science and Technology, Taiwan (103-2621-B-001 -003 -MY3)
- Sheng-Feng Shen
National Science Foundation (IOS-1656098)
- Dustin Reid Rubenstein
Ministry of Science and Technology, Taiwan (101-2313-B-001 -008 -MY3)
- Sheng-Feng Shen
Academia Sinica (AS-SS-106-05)
- Sheng-Feng Shen
Academia Sinica (AS-IA-106-L01)
- Sheng-Feng Shen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Tsai et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,238
- views
-
- 207
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 13
- citations for umbrella DOI https://doi.org/10.7554/eLife.57022