Antagonistic Effects of Intraspecific Cooperation and Interspecific Competition on Thermal Performance

  1. Hsiang-Yu Tsai
  2. Dustin Reid Rubenstein
  3. Bo-Fei Chen
  4. Mark Liu
  5. Shih-Fan Chan
  6. De-Pei Chen
  7. Syuan-Jyun Sun
  8. Tzu-Neng Yuan
  9. Sheng-Feng Shen  Is a corresponding author
  1. Biodiversity Research Center, Academia Sinica, Taiwan, Republic of China
  2. Columbia University, United States
  3. Biodiversity Research Center, Academia Sinica, Taiwan

Abstract

Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species' optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change.

Data availability

All data analysed during the study are available in Dryad.

The following data sets were generated
    1. Shen
    2. Sheng-Feng et al
    (2020) Source data for empirical experiments
    Dryad Digital Repository, doi.org/10.5061/dryad.w0vt4b8nw.

Article and author information

Author details

  1. Hsiang-Yu Tsai

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Dustin Reid Rubenstein

    Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo-Fei Chen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3005-8724
  4. Mark Liu

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shih-Fan Chan

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. De-Pei Chen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Syuan-Jyun Sun

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  8. Tzu-Neng Yuan

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  9. Sheng-Feng Shen

    Biodiversity Research Center, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    shensf@sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0631-6343

Funding

Ministry of Science and Technology, Taiwan (103-2621-B-001 -003 -MY3)

  • Sheng-Feng Shen

National Science Foundation (IOS-1656098)

  • Dustin Reid Rubenstein

Ministry of Science and Technology, Taiwan (101-2313-B-001 -008 -MY3)

  • Sheng-Feng Shen

Academia Sinica (AS-SS-106-05)

  • Sheng-Feng Shen

Academia Sinica (AS-IA-106-L01)

  • Sheng-Feng Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Samuel L Díaz-Muñoz, University of California, Davis, United States

Publication history

  1. Received: March 18, 2020
  2. Accepted: July 28, 2020
  3. Accepted Manuscript published: August 18, 2020 (version 1)
  4. Version of Record published: August 21, 2020 (version 2)

Copyright

© 2020, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,505
    Page views
  • 156
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hsiang-Yu Tsai
  2. Dustin Reid Rubenstein
  3. Bo-Fei Chen
  4. Mark Liu
  5. Shih-Fan Chan
  6. De-Pei Chen
  7. Syuan-Jyun Sun
  8. Tzu-Neng Yuan
  9. Sheng-Feng Shen
(2020)
Antagonistic Effects of Intraspecific Cooperation and Interspecific Competition on Thermal Performance
eLife 9:e57022.
https://doi.org/10.7554/eLife.57022
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Xiaoning Huang et al.
    Research Article

    One defining goal of microbiome research is to uncover mechanistic causation that dictates the emergence of structural and functional traits of microbiomes. However, the extraordinary degree of ecosystem complexity has hampered the realization of the goal. Here, we developed a systematic, complexity-reducing strategy to mechanistically elucidate the compositional and metabolic characteristics of microbiome by using the kombucha tea microbiome as an example. The strategy centered around a two-species core that was abstracted from but recapitulated the native counterpart. The core was convergent in its composition, coordinated on temporal metabolic patterns, and capable for pellicle formation. Controlled fermentations uncovered the drivers of these characteristics, which were also demonstrated translatable to provide insights into the properties of communities with increased complexity and altered conditions. This work unravels the pattern and process underlying the kombucha tea microbiome, providing a potential conceptual framework for mechanistic investigation of microbiome behaviors.

    1. Ecology
    Jolle Wolter Jolles et al.
    Research Article Updated

    Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal ‘strike zone’ the most vulnerable to be targeted. From the prey’s perspective, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike‘s head. Our results highlight the crucial interplay between predators’ attack strategy and response of prey underlying the predation risk within mobile animal groups.