A remote sensing derived dataset of 100 million individual tree crowns for the National Ecological Observatory Network

  1. Ben G Weinstein  Is a corresponding author
  2. Sergio Marconi
  3. Stephanie A Bohlman
  4. Alina Zare
  5. Aditya Singh
  6. Sarah J Graves
  7. Ethan P White
  1. University of Florida, United States
  2. University of Wisconsin - Madison, United States

Abstract

Forests provide biodiversity, ecosystem and economic services. Information on individual trees is important for understanding forest ecosystems but obtaining individual-level data at broad scales is challenging due to the costs and logistics of data collection. While advances in remote sensing techniques allow surveys of individual trees at unprecedented extents, there remain technical challenges in turning sensor data into tangible information. Using deep learning methods, we produced an open-source dataset of individual-level crown estimates for 100 million trees at 37 sites across the United States surveyed by the National Ecological Observatory Network's Airborne Observation Platform. Each canopy tree crown is represented by a rectangular bounding box and includes information on the height, crown area, and spatial location of the tree. These data have the potential to drive significant expansion of individual-level research on trees by facilitating both regional analyses and cross-region comparisons encompassing forest types from most of the United States.

Data availability

The dataset is available at https://zenodo.org/record/3765872#.X2J1zZNKjOQ

Article and author information

Author details

  1. Ben G Weinstein

    Wildlife Ecology and Conservation, University of Florida, Gainesville, United States
    For correspondence
    ben.weinstein@weecology.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2176-7935
  2. Sergio Marconi

    Wildlife Ecology and Conservation, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephanie A Bohlman

    Forest Resources and Conservation, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alina Zare

    Electrical Engineering and Computer Engineering, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4847-7604
  5. Aditya Singh

    Department of Agricultural & Biological Engineering, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah J Graves

    Environmental Science, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ethan P White

    Wildlife Ecology and Conservation, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6728-7745

Funding

Gordon and Betty Moore Foundation (GBMF4563)

  • Ethan P White

National Science Foundation (1926542)

  • Stephanie A Bohlman
  • Alina Zare
  • Aditya Singh
  • Ethan P White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernhard Schmid, University of Zurich, Switzerland

Version history

  1. Received: September 9, 2020
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 19, 2021 (version 1)
  4. Version of Record published: February 19, 2021 (version 2)

Copyright

© 2021, Weinstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,604
    views
  • 359
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben G Weinstein
  2. Sergio Marconi
  3. Stephanie A Bohlman
  4. Alina Zare
  5. Aditya Singh
  6. Sarah J Graves
  7. Ethan P White
(2021)
A remote sensing derived dataset of 100 million individual tree crowns for the National Ecological Observatory Network
eLife 10:e62922.
https://doi.org/10.7554/eLife.62922

Share this article

https://doi.org/10.7554/eLife.62922

Further reading

    1. Ecology
    Songdou Zhang, Shiheng An
    Insight

    The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.

    1. Ecology
    2. Evolutionary Biology
    Alexis J Breen, Dominik Deffner
    Research Article

    In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles—a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male—versus female—grackles finish ‘relearning’ faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles’ choice behaviour is governed more strongly by the ‘weight’ of relative differences in recent foraging payoffs—i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning—where we simulate ‘birds’ based on empirical estimates of our grackles’ reinforcement learning—replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.