Relative demographic susceptibility does not explain the extinction chronology of Sahul's megafauna

  1. Corey J A Bradshaw  Is a corresponding author
  2. Christopher N Johnson
  3. John Llewelyn
  4. Vera Weisbecker
  5. Giovanni Strona
  6. Frédérik Saltré
  1. Flinders University, Australia
  2. University of Tasmania, Australia
  3. University of Helsinki, Finland

Abstract

The causes of Sahul's megafauna extinctions remain uncertain, although several interacting factors were likely responsible. To examine the relative support for hypotheses regarding plausible ecological mechanisms underlying these extinctions, we constructed the first stochastic, age-structured models for 13 extinct megafauna species from five functional/taxonomic groups, as well as eight extant species within these groups for comparison. Perturbing specific demographic rates individually, we tested which species were more demographically susceptible to extinction, and then compared these relative sensitivities to the fossil-derived extinction chronology. Our models show that the macropodiformes were the least demographically susceptible to extinction, followed by carnivores, monotremes, vombatiform herbivores, and large birds. Five of the eight extant species were as or more susceptible than the extinct species. There was no clear relationship between extinction susceptibility and the extinction chronology for any perturbation scenario, while body mass and generation length explained much of the variation in relative risk. Our results reveal that the actual mechanisms leading to the observed extinction chronology were unlikely related to variation in demographic susceptibility per se, but were possibly driven instead by finer-scale variation in climate change and/or human prey choice and relative hunting success.

Data availability

All data and are R code needed to reproduce the analyses are available for download at github.com/cjabradshaw/MegafaunaSusceptibility.

The following previously published data sets were used
    1. Peters
    2. K. J.
    3. Saltré
    4. F.
    5. Friedrich
    6. T.
    7. Jacobs
    8. Z.
    9. Wood
    10. R.
    11. McDowell
    12. M.
    13. Ulm
    14. S.
    15. Bradshaw
    16. C.J.A
    (2019) FosSahul 2.0
    doi:10.1038/s41597-019-0267-3Fisher, D. O., Owens, I. P. F., and Johnson, C. N. (2001). The ecological basis of life history variation in marsupials. Ecology 82, 3531-3540. doi: 10.1890/0012-9658(2001)082[3531:TEBOLH]2.0.CO;2.

Article and author information

Author details

  1. Corey J A Bradshaw

    Global Ecology, College of Science and Engineering, Flinders University, Adelaide, Australia
    For correspondence
    corey.bradshaw@flinders.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5328-7741
  2. Christopher N Johnson

    Dynamics of Eco-Evolutionary Pattern, University of Tasmania, Hobart, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. John Llewelyn

    Global Ecology, College of Science and Engineering, Flinders University, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Vera Weisbecker

    Global Ecology, College of Science and Engineering, Flinders University, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Giovanni Strona

    Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2294-4013
  6. Frédérik Saltré

    Global Ecology, College of Science and Engineering, Flinders University, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CE170100015)

  • Corey J A Bradshaw
  • Christopher N Johnson
  • Vera Weisbecker

Australian Research Council (DP170103227)

  • Vera Weisbecker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bradshaw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Corey J A Bradshaw
  2. Christopher N Johnson
  3. John Llewelyn
  4. Vera Weisbecker
  5. Giovanni Strona
  6. Frédérik Saltré
(2021)
Relative demographic susceptibility does not explain the extinction chronology of Sahul's megafauna
eLife 10:e63870.
https://doi.org/10.7554/eLife.63870

Share this article

https://doi.org/10.7554/eLife.63870

Further reading

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.

    1. Ecology
    Laura Fargeot, Camille Poesy ... Blanchet Simon
    Research Article

    Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels – primary producers, primary consumers, and secondary consumers – in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity – gauged within three pivotal species – within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.