Volatile DMNT directly protects plants against Plutella xylostella by disrupting peritrophic matrix barrier in midgut

  1. Chen Chen
  2. Hongyi Chen
  3. Shijie Huang
  4. Taoshan Jiang
  5. Chuanhong Wang
  6. Zhen Tao
  7. Chen He
  8. Qingfeng Tang
  9. Peijin Li  Is a corresponding author
  1. Anhui Agricultual University, China
  2. Anhui Agricultural University, China

Abstract

Insect pests negatively affect crop quality and yield; identifying new methods to protect crops against insects therefore has important agricultural applications. Our analysis of transgenic Arabidopsis thaliana plants showed that overexpression of PENTACYCLIC TRITERPENE SYNTHASE 1 (PEN1), encoding the key biosynthetic enzyme for the natural plant product (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), led to significant resistance against a major insect pest, Plustella xylostella. DMNT treatment severely damaged the peritrophic matrix (PM), a physical barrier isolating food and pathogens from the midgut wall cells. DMNT repressed the expression of PxMucin in midgut cells and knocking down PxMucin resulted in PM rupture and P. xylostella death. A 16S RNA survey revealed that DMNT significantly disrupted midgut microbiota populations and that midgut microbes were essential for DMNT-induced killing. Therefore, we propose that the midgut microbiota assists DMNT in killing P. xylostella. These findings may provide a novel approach for plant protection against P. xylostella.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1-6, Figure 1-figure supplement 1, 3-5, Figure 4-figure supplement 2, Figure 5-figure supplement 2, and Figure 6-figure supplement 2-3.

Article and author information

Author details

  1. Chen Chen

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hongyi Chen

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Shijie Huang

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Taoshan Jiang

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuanhong Wang

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhen Tao

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Chen He

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Qingfeng Tang

    The School of Plant Protection, Anhui Agricultural University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Peijin Li

    The School of Life Sciences, Anhui Agricultual University, Hefei, China
    For correspondence
    Peijin.li@ahau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1579-7553

Funding

National Key Research and Development Program of China (2017YFD0301301)

  • Peijin Li

National Key Research and Development Program of China (2016YFD0101803)

  • Peijin Li

Natural Science Foundation of China (31670264)

  • Peijin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Youngsung Joo, Chungbuk National University, Republic of Korea

Publication history

  1. Received: October 11, 2020
  2. Accepted: February 17, 2021
  3. Accepted Manuscript published: February 18, 2021 (version 1)
  4. Version of Record published: March 2, 2021 (version 2)

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,876
    Page views
  • 482
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chen Chen
  2. Hongyi Chen
  3. Shijie Huang
  4. Taoshan Jiang
  5. Chuanhong Wang
  6. Zhen Tao
  7. Chen He
  8. Qingfeng Tang
  9. Peijin Li
(2021)
Volatile DMNT directly protects plants against Plutella xylostella by disrupting peritrophic matrix barrier in midgut
eLife 10:e63938.
https://doi.org/10.7554/eLife.63938
  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Zinan Wang, Joseph P Receveur ... Henry Chung
    Research Article

    Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the waterproofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.

    1. Ecology
    Thomas P Smith, Shorok Mombrikotb ... Thomas Bell
    Research Article

    How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to ‘switch on’ at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.