1. Ecology
Download icon

A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae)

  1. Ke Yang
  2. Xin-Lin Gong
  3. Guo-Cheng Li
  4. Ling-Qiao Huang
  5. Chao Ning
  6. Chen-Zhu Wang  Is a corresponding author
  1. Institute of Zoology, Chinese Academy of Sciences, China
Research Article
  • Cited 2
  • Views 1,290
  • Annotations
Cite this article as: eLife 2020;9:e64114 doi: 10.7554/eLife.64114

Abstract

Feeding and oviposition deterrents help phytophagous insects to identify host plants. The taste organs of phytophagous insects contain bitter gustatory receptors (GRs). To explore their function, the GRs in Plutella xylostella were analyzed. Through RNA sequencing and qPCR, we detected abundant PxylGr34 transcripts in the larval head and adult antennae. Functional analyses using the Xenopus oocyte expression system and 24 diverse phytochemicals showed that PxylGr34 is tuned to the canonical plant hormones brassinolide (BL) and 24-epibrassinolide (EBL). Electrophysiological analyses revealed that the medial sensilla styloconica of 4th instar larvae are responsive to BL and EBL. Dual-choice bioassays demonstrated that BL inhibits larval feeding and female oviposition. Knock-down of PxylGr34 by RNAi attenuates the taste responses to BL, and abolishes BL-induced feeding inhibition. These results increase our understanding of how herbivorous insects detect compounds that deter feeding and oviposition, and may be useful for designing plant hormone-based pest management strategies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all the figures.

Article and author information

Author details

  1. Ke Yang

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4138-3373
  2. Xin-Lin Gong

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Guo-Cheng Li

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ling-Qiao Huang

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chao Ning

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Chen-Zhu Wang

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    czwang@ioz.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0418-8621

Funding

National Natural Science Foundation of China (31830088)

  • Chen-Zhu Wang

National Key R&D Program of China (2017YFD0200400)

  • Chen-Zhu Wang

China Postdoctoral Science Foundation (2019M660792)

  • Ke Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Animal Care and Use Committee of theInstitute of Zoology, Chinese Academy of Sciences, and followed The Guidelines for the Care and Use of Laboratory Animals (protocol number: IOZ17090-A).

Reviewing Editor

  1. Kristin Scott, University of California, Berkeley, United States

Publication history

  1. Received: October 17, 2020
  2. Accepted: December 10, 2020
  3. Accepted Manuscript published: December 11, 2020 (version 1)
  4. Version of Record published: January 13, 2021 (version 2)

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,290
    Page views
  • 431
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Piero Amodio et al.
    Research Article

    Eurasian jays have been reported to protect their caches by responding to cues about either the visual perspective or current desire of an observing conspecific, similarly to other corvids. Here, we used established paradigms to test whether these birds can - like humans - integrate multiple cues about different mental states and perform an optimal response accordingly. Across five experiments, which also include replications of previous work, we found little evidence that our jays adjusted their caching behaviour in line with the visual perspective and current desire of another agent, neither by integrating these social cues nor by responding to only one type of cue independently. These results raise questions about the reliability of the previously reported effects and highlight several key issues affecting reliability in comparative cognition research.

    1. Ecology
    Alice C Hughes et al.
    Research Article Updated

    As the biodiversity crisis continues, we must redouble efforts to understand and curb pressures pushing species closer to extinction. One major driver is the unsustainable trade of wildlife. Trade in internationally regulated species gains the most research attention, but this only accounts for a minority of traded species and we risk failing to appreciate the scale and impacts of unregulated legal trade. Despite being legal, trade puts pressure on wild species via direct collection, introduced pathogens, and invasive species. Smaller species-rich vertebrates, such as reptiles, fish, and amphibians, may be particularly vulnerable to trading because of gaps in regulations, small distributions, and demand of novel species. Here, we combine data from five sources: online web searches in six languages, Convention on International Trade in Endangered Species (CITES) trade database, Law Enforcement Management Information System (LEMIS) trade inventory, IUCN assessments, and a recent literature review, to characterise the global trade in amphibians, and also map use by purpose including meat, pets, medicinal, and for research. We show that 1215 species are being traded (17% of amphibian species), almost three times previous recorded numbers, 345 are threatened, and 100 Data Deficient or unassessed. Traded species origin hotspots include South America, China, and Central Africa; sources indicate 42% of amphibians are taken from the wild. Newly described species can be rapidly traded (mean time lag of 6.5 years), including threatened and unassessed species. The scale and limited regulation of the amphibian trade, paired with the triptych of connected pressures (collection, pathogens, invasive species), warrants a re-examination of the wildlife trade status quo, application of the precautionary principle in regard to wildlife trade, and a renewed push to achieve global biodiversity goals.