Global gradients in intertidal species richness and functional groups

  1. Jakob Thyrring  Is a corresponding author
  2. Lloyd S Peck
  1. British Antarctic Survey, United Kingdom

Abstract

Whether global latitudinal diversity gradients exist in rocky intertidal a-diversity and across functional groups remains unknown. Using literature data from 433 intertidal sites, we investigated α-diversity patterns across 155° of latitude, and whether local-scale or global-scale structuring processes control α-diversity. We, furthermore, investigated how the relative composition of functional groups changes with latitude. α-diversity differed among hemispheres with a mid-latitudinal peak in the north, and a non-significant unimodal pattern in the south, but there was no support for a tropical-to-polar decrease in α-diversity. Although global-scale drivers had no discernible effect, the local-scale drivers significantly affected α-diversity, and our results reveal that latitudinal diversity gradients are outweighed by local-processes. In contrast to α-diversity patterns, three functional groups: predators, grazers and suspension-feeders diversity declined with latitude, coinciding with an inverse gradient in algae. Polar and tropical intertidal data were sparse, and more sampling is required to improve knowledge of marine biodiversity.

Data availability

Data used in this study are freely available from the Multi-Agency Rocky Intertidal Network (MARINe; pacificrockyintertidal.org), the Ocean Biogeographic Information System (OBIS; obis.org) and the Alaska Ocean Observing System (AOOS; aoos.org). Publications obtained from the literature search, and previously unpublished species lists from Arctic locations can be found on the Zenodo data repository (Thyrring & Peck, 2020).

The following data sets were generated

Article and author information

Author details

  1. Jakob Thyrring

    Biodiversity, Evolution and Adaptation team, British Antarctic Survey, Cambridge, United Kingdom
    For correspondence
    jakyrr57@bas.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1029-3105
  2. Lloyd S Peck

    Biodiversity, Evolution and Adaptation team, British Antarctic Survey, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Danmarks Frie Forskningsfond (7027-00060B)

  • Lloyd S Peck

UKRI Natural Environment Research Council

  • Lloyd S Peck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: November 2, 2020
  2. Accepted: March 18, 2021
  3. Accepted Manuscript published: March 19, 2021 (version 1)
  4. Version of Record published: April 8, 2021 (version 2)

Copyright

© 2021, Thyrring & Peck

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,268
    views
  • 284
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jakob Thyrring
  2. Lloyd S Peck
(2021)
Global gradients in intertidal species richness and functional groups
eLife 10:e64541.
https://doi.org/10.7554/eLife.64541

Share this article

https://doi.org/10.7554/eLife.64541

Further reading

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.

    1. Ecology
    Lan Pang, Gangqi Fang ... Jianhua Huang
    Research Article

    The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell—teratocytes—that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.