Testosterone pulses paired with a location induce a place preference to the nest of a monogamous mouse under field conditions
Abstract
Changing social environments such as the birth of young or aggressive encounters present a need to adjust behavior. Previous research examined how long-term changes in steroid hormones mediate these adjustments. We tested the novel concept that the rewarding effects of transient testosterone pulses (T-pulses) in males after social encounters alters their spatial distribution on a territory. In free-living monogamous California mice (Peromyscus californicus), males administered three T-injections at the nest spent more time at the nest than males treated with placebo injections. This mimics T-induced place preferences in the laboratory. Female mates of T-treated males spent less time at the nest but the pair produced more vocalizations and call types than controls. Traditionally, transient T-changes were thought to have transient behavioral effects. Our work demonstrates that in the wild, when T-pulses occur in a salient context such as a territory, the behavioral effects last days after T-levels return to baseline.
Data availability
All data analysed for this study are included in the manuscript and supporting files. Source data files have been provided for all figures.Petric, Radmila. 2021. "T-Pulses at the Nest." OSF. osf.io/qknze.doi.org/10.17605/OSF.IO/QKNZE
Article and author information
Author details
Funding
National Science Foundation (1355163)
- Matina C Kalcounis-Rueppell
- Catherine A Marler
Sigma Xi (Spring 2018)
- Radmila Petric
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal care and use guidelines were followed and research protocols for this study were approved by the University of North Carolina at Greensboro and University of Wisconsin-Madison Institutional Animal Care and Use Committees (IACUC; UNCG 12-004 and UWM L005047-A01) and by California Department of Fish and Wildlife under Scientific Collection Permits (SC-9663 and SC-13190).
Copyright
© 2022, Petric et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 909
- views
-
- 92
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 7
- citations for umbrella DOI https://doi.org/10.7554/eLife.65820