Naïve individuals promote collective exploration in homing pigeons

  1. Gabriele Valentini  Is a corresponding author
  2. Theodore P Pavlic
  3. Sara Imari Walker
  4. Stephen C Pratt
  5. Dora Biro
  6. Takao Sasaki
  1. Arizona State University, School of Earth and Space Exploration, United States
  2. Arizona State University, School of Life Sciences, United States
  3. Arizona State University, Beyond Center for Fundamental Concepts in Science, United States
  4. Arizona State University, School of Computing and Augmented Intelligence, United States
  5. Arizona State University, School of Sustainability, United States
  6. Arizona State University, School of Complex Adaptive Systems, United States
  7. Arizona State University, ASU–SFI Center for Biosocial Complex Systems, United States
  8. Santa Fe Institute, United States
  9. University of Oxford, Department of Zoology, United States
  10. University of Rochester, Department of Brain and Cognitive Sciences, United States
  11. University of Georgia, Odum School of Ecology, United States
10 figures, 9 tables and 1 additional file

Figures

Illustration of the methodological approach.

The spatial trajectories of an experienced (E) and a naïve (N) bird (point 1) are encoded as clockwise and counterclockwise rotations (point 2) which we represent as discrete time series (point 3). …

Predictive power of birds over generations.

Panel (a) shows the net predictive power of the two birds over generations; it measures the excess predictive information within the pair and highlights which of the two birds is more informative …

Predictive power of birds as a function of relative distance.

Panel (a) shows sample flight trajectories for a number of different releases, r, of the same pair of birds. Colours highlight which bird is ahead of the other during different segments of the …

Analysis of exploration and exploitation.

Panel (a) shows the proportion of exploration over releases for the experimental group (the red dotted vertical line separates solo flights at generation 1 from paired flights at generations 2–5), …

Appendix 1—figure 1
Landscape of information transfer as a function of the history length, k = ∈ {1, ... ,17}, and of the sampling period, {0.2, 0.4, ... , 4.0} s.

Panel (a) shows the total transfer of information between the pair of birds, TEN+TNE, averaged over all releases and generations. Panel (b) shows the net transfer of information between thepair of birds, …

Appendix 1—figure 2
Probability density function of the duration of flight segments with either the experienced or the naïve bird at the front of the pair.

Panel (a) shows the results aggregated over all generations. Panel (b) shows the results separately for each generation.

Appendix 1—figure 3
Distribution of minimum distances between the pairs of consecutive flights.

Panel (a) shows the results for the trained birds during the first generation of the experiment. Panel (b) shows the results for the pair of birds during all remaining generations of the …

Appendix 1—figure 4
Illustration of the distribution of point-to-point distances between pairs of consecutive flights highlighting the 300 m threshold that demarks the end of exploitation and the beginning on exploration.

Panel (a) reports the results for experimental pairs over generations 2–5, panel (b) reports those for the fixed-pairs control, and panel (c) those for the solo control. Panel (d) shows the …

Appendix 1—figure 5
Illustration of the distribution of point-to-point distances between each flight of a generation (focal trajectories) and the last flight of the previous generation (baseline trajectory).

Colors and vertical lines highlight the 300 meter threshold that demarks the end of exploitation and the beginning of exploration. Panel (a) reports the results for experimental pairs over …

Appendix 1—figure 6
Illustration of the proportion of exploration (respectively, one minus the proportion of exploitation) over releases when considering the last release at the previous generation as the baseline trajectory.

Results are shown for the experimental group, the solo control, and the fixed pairs control. The red dotted vertical line delineates the end of the experimental group’s training phase. Smoothed …

Tables

Appendix 1—table 1
Statistical comparison of information transfer between the original and the surrogate dataset over all generations and over separate generations.

Column 1 reports the generation and sample sizes. Columns 2 and 4 report the differences between the mean value of transfer entropy of the original dataset and that of the surrogate dataset. Columns …

Original vs. surrogate dataset
GenerationTEN-TENsH1:TEN§amp;gt;TENsTNE-TNEsH1:TNE§amp;gt;TNEs
All(n=343,ns=29035)μ=0.0089p<.001(W=6145522)μ=0.0088p<.001(W=6126284)
2(n=94,ns=7912)μ=0.0062p<.001(W=445262)μ=0.0074p<.001(W=452733)
3(n=99,ns=9801)μ=0.0094p<.001(W=615721.5)μ=0.0119p<.001(W=645665.5)
4(n=81,ns=6561)μ=0.0071p=.006(W=308433.5)μ=0.0057p=.015(W=303085.5)
5(n=69,ns=4761)μ=0.0111p<.001(W=214258.5)μ=0.0075p=.002(W=197618.5)
Appendix 1—table 2
Statistics for the duration of flight segments with either the experienced or the naïve bird at the front of the pair.

Column 1 reports the generation and sample sizes. Columns 2 and 3 give the mean duration and the standard deviation of segments for the experienced and the naïve bird. Column 4 reports the results …

GenerationExperiencedNaïveH1:DEDN
All(nE=10725,nN=10773)μ=7.93,σ=12.92μ=8.23,σ=14.12p=.047(W=56865638)
2(nE=2512,nN=2492)μ=8.89,σ=17.51μ=8.81,σ=13.55p=.13W=3052262
3(nE=3690,nN=3737)μ=6.83,σ=9.08μ=7.96,σ=14.51p<.001(W=6588674)
4(nE=2297nN=2283)μ=8.63,σ=13.65μ=8.55,σ=14.23p=.86W=2630132
5(nE=2226,nN=2261)μ=7.98,σ=11.23μ=7.73,σ=13.93p=.23W=2568854
Appendix 1—table 3
Statistics for the proportion of a flight with either the experienced or the naïve bird at the front of the pair.

Column 1 reports the generation and sample size. Columns 2 and 3 give the mean and the standard deviation of the proportion of a flight with either the experienced or the naïve bird at the front of …

GenerationExperiencedNaïveH1:PEPN
All(n=341)μ=0.49,σ=0.2μ=0.51,σ=0.2p=.46V=27817.5
2(n=92)μ=0.51,σ=0.23μ=0.49,σ=0.23p=.69V=2243
3(n=99)μ=0.46,σ=0.17μ=0.54,σ=0.17p=.03(V=1851)
4(n=81)μ=0.5,σ=0.2μ=0.5,σ=0.2p=.84V=1705
5(n=69)μ=0.49,σ=0.2μ=0.51,σ=0.2p=.95V=1219
Appendix 1—table 4
Statistical comparison of mean proportions of a flight spent exploring versus exploiting across treatments (experimental pairs, solo, and fixed-pairs controls) for the first 12 releases (generation 1) and for releases 13–60 (generation 2–5).

Entries report the proportion of exploration vs. exploitation for pairs of treatments as well as the results of two-sided two-sample Whitney–Mann–Wilcoxon rank-sum tests with continuity correction …

ReleasesDatasetSolo controlFixed-pairs control
1–12Experimental (generation 1)Row: 36.7% vs. 63.3%Col: 34.2% vs. 65.8%Row: 36.7% vs. 63.3%Col: 51.7% vs. 48.3%
p <. 001 (W = 2230)
Solo controlRow: 36.7% vs. 63.3%Col: 34.2% vs. 65.8%
p <.001 (W=1837)
13–60Experimental (generations 2–5)Row: 32.9% vs. 67.1%Col: 15.7% vs. 84.3%Row: 32.9% vs. 67.1%Col: 29.3% vs. 70.7%
p=.0456 (W=50472)
Solo controlRow: 15.7% vs. 84.3%Col: 29.3% vs. 70.7%
p<.001 (W=31517)
Appendix 1—table 5
Statistical comparison of mean proportions of a flight spent exploring versus exploiting across treatments (experimental pairs, solo and fixed pairs controls) for the first 12 releases (generation 1) and for releases 13–60 (generation 2–5) when considering the last release at the previous generation as the baseline trajectory.

Entries report the proportion of exploration vs exploitation for pairs of treatments as well as the results of two-sided two-sample Whitney–Mann–Wilcoxon rank-sum tests with continuity correction …

ReleasesDatasetSolo controlFixed pairs control
1–12Experimental (gen. 1)Row: 61.5 % vs 38.5%Col: 55.8 % vs 44.2%Row: 61.5 % vs 38.5%Col: 82.9 % vs 17.1%
Solo controlRow: 55.8 % vs 44.2%Col: 82.9 % vs 17.1%
13–60Experimental (gen. 2–5)Row: 46.6 % vs 53.4%Col: 18.9 % vs 81.1%Row: 46.6 % vs 53.4%Col: 32.4 % vs 67.6%
Solo controlRow: 18.9 % vs 81.1%Col: 32.4 % vs 67.6%
Appendix 1—table 6
Proportion of a flight led by each of the two birds, calculated separately for exploration and exploitation phases.

Column one reports the generation and sample size. Columns 2 and 3 give the mean and the standard deviation of the proportion of a flight led, respectively, by the experienced and the naïve bird for …

ExplorationExploitation
GenerationExperiencedNaïveExperiencedNaïve
All(n=341)μ=0.17,σ=0.15μ=0.16,σ=0.13μ=0.32,σ=0.18μ=0.35,σ=0.2
2(n=92)μ=0.2,σ=0.17μ=0.17,σ=0.14μ=0.31,σ=0.2μ=0.32,σ=0.21
3(n=99)μ=0.16,σ=0.13μ=0.19,σ=0.13μ=0.3,σ=0.16μ=0.36,σ=0.17
4(n=81)μ=0.18,σ=0.16μ=0.16,σ=0.13μ=0.32,σ=0.18μ=0.34,σ=0.22
n=69μ=0.13,σ=0.13μ=0.1,σ=0.1μ=0.37,σ=0.17μ=0.4,σ=0.21
Appendix 1—table 7
Statistical comparison of leadership by experienced vs. naïve birds, tested separately for exploration and exploitation over all generations and over separate generations.

Column one reports the generation and sample size. Columns 2 and 3 report the results of two-sided paired Wilcoxon signed-rank tests with continuity correction (-value and statistic) for differences …

Experienced vs naïve
GenerationExplorationExploitation
All(n=341)p=.44V=28820p=.13V=26240
2(n=92)p=.17V=2490p=.71V=2048
3(n=99)p=.08V=1891p=.035(V=1871)
4(n=81)p=.36V=1767p=.79V=1603
5(n=69)p=.22V=1187p=.8V=1131
Appendix 1—table 8
Statistical comparison of the proportion of transitions from exploitation to exploration and from exploration to exploitation led by the experienced and by the naïve bird over generations.

Column one reports the generation number. Columns 2 and 4 report the estimated probabilities that transitions are led by the experienced bird,, and by the naïve bird,, for transitions, respectively, …

ExploitationExplorationExplorationExploitation
GenerationPEversusPNH1:PE0.5PEversusPNH1:PE0.5
AllPE=0.467,PN=0.533p=.042(n=964)PE=0.513,PN=0.487p=.42n=966
2PE=0.494,PN=0.506p=.9n=247PE=0.52,PN=0.48p=.56n=244
3PE=0.432,PN=0.568p=.02(n=301)PE=0.483,PN=0.517p=.6n=300
4PE=0.5,PN=0.5p=1n=216PE=0.539,PN=0.461p=.28n=219
5PE=0.45,PN=0.55p=.18n=200PE=0.522,PN=0.478p=.57n=203
Appendix 1—table 9
Statistical comparison of the proportion of transitions from exploitation to exploration and from exploration to exploitation led by the experienced and by the naïve bird over releases.

Column one reports the release number. Columns 2 and 4 report the estimated probabilities that transitions are led by the experienced bird,, and by the naïve bird,, for transitions, respectively, …

ExploitationExplorationExplorationExploitation
ReleasePEversusPNH1:PE0.5PEversusPNH1:PE0.5
1PE=0.295,PN=0.705p<.01(n=44)PE=0.477,PN=0.523p=.88n=44
2PE=0.478,PN=0.522p=.81n=69PE=0.522,PN=0.478p=.81n=67
3PE=0.519,PN=0.481p=.83n=81PE=0.575,PN=0.425p=.22n=80
4PE=0.576,PN=0.424p=.27n=66PE=0.6,PN=0.4p=.14n=65
5PE=0.487,PN=0.513p=.91n=76PE=0.519,PN=0.481p=.82n=77
6PE=0.54,PN=0.46p=.48n=100PE=0.465,PN=0.535p=.55n=99
7PE=0.443,PN=0.557p=.34n=88PE=0.494,PN=0.506p=1.0n=89
8PE=0.409,PN=0.591p=.18n=66PE=0.597,PN=0.403p=.14n=67
9PE=0.438,PN=0.562p=.22n=112PE=0.496,PN=0.504p=1n=115
10PE=0.422,PN=0.578p=.17n=90PE=0.522,PN=0.478p=.75n=92
11PE=0.391,PN=0.609p=.053n=87PE=0.453,PN=0.547p=.45n=86
12PE=0.541,PN=0.459p=.52n=85PE=0.482,PN=0.518p=.83n=85

Additional files

Download links