Linking spatial self-organization to community assembly and biodiversity

  1. Bidesh K Bera
  2. Omer Tzuk
  3. Jamie J R Bennett
  4. Ehud Meron  Is a corresponding author
  1. Ben-Gurion University of the Negev, Israel

Abstract

Temporal shifts to drier climates impose environmental stresses on plant communities that may result in community reassembly and threatened ecosystem services, but also may trigger self-organization in spatial patterns of biota and resources, which act to relax these stresses. The complex relationships between these counteracting processes - community reassembly and spatial self-organization - have hardly been studied. Using a spatio-temporal model of dryland plant communities and a trait-based approach, we study the response of such communities to increasing water-deficit stress. We first show that spatial patterning acts to reverse shifts from fast-growing species to stress-tolerant species, as well as to reverse functional-diversity loss. We then show that spatial self-organization buffers the impact of further stress on community structure. Finally, we identify multistability ranges of uniform and patterned community states and use them to propose forms of non-uniform ecosystem management that integrate the need for provisioning ecosystem services with the need to preserve community structure.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is uploaded to github

The following data sets were generated

Article and author information

Author details

  1. Bidesh K Bera

    Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Omer Tzuk

    Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6541-3311
  3. Jamie J R Bennett

    Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9748-5010
  4. Ehud Meron

    Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
    For correspondence
    ehud@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3602-7411

Funding

Irsael Science Foundation (1053/17)

  • Bidesh K Bera

PBC Postdoctoral Fellowship

  • Bidesh K Bera

Kreitman Postdoctoral Fellowship

  • Jamie J R Bennett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernhard Schmid, University of Zurich, Switzerland

Version history

  1. Preprint posted: June 20, 2021 (view preprint)
  2. Received: September 13, 2021
  3. Accepted: September 19, 2021
  4. Accepted Manuscript published: September 27, 2021 (version 1)
  5. Version of Record published: October 7, 2021 (version 2)

Copyright

© 2021, Bera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,018
    views
  • 207
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bidesh K Bera
  2. Omer Tzuk
  3. Jamie J R Bennett
  4. Ehud Meron
(2021)
Linking spatial self-organization to community assembly and biodiversity
eLife 10:e73819.
https://doi.org/10.7554/eLife.73819

Share this article

https://doi.org/10.7554/eLife.73819

Further reading

    1. Ecology
    Songdou Zhang, Shiheng An
    Insight

    The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.

    1. Ecology
    2. Evolutionary Biology
    Alexis J Breen, Dominik Deffner
    Research Article

    In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles—a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male—versus female—grackles finish ‘relearning’ faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles’ choice behaviour is governed more strongly by the ‘weight’ of relative differences in recent foraging payoffs—i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning—where we simulate ‘birds’ based on empirical estimates of our grackles’ reinforcement learning—replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.