Linking spatial self-organization to community assembly and biodiversity

  1. Bidesh K Bera
  2. Omer Tzuk
  3. Jamie J R Bennett
  4. Ehud Meron  Is a corresponding author
  1. Ben-Gurion University of the Negev, Israel

Abstract

Temporal shifts to drier climates impose environmental stresses on plant communities that may result in community reassembly and threatened ecosystem services, but also may trigger self-organization in spatial patterns of biota and resources, which act to relax these stresses. The complex relationships between these counteracting processes - community reassembly and spatial self-organization - have hardly been studied. Using a spatio-temporal model of dryland plant communities and a trait-based approach, we study the response of such communities to increasing water-deficit stress. We first show that spatial patterning acts to reverse shifts from fast-growing species to stress-tolerant species, as well as to reverse functional-diversity loss. We then show that spatial self-organization buffers the impact of further stress on community structure. Finally, we identify multistability ranges of uniform and patterned community states and use them to propose forms of non-uniform ecosystem management that integrate the need for provisioning ecosystem services with the need to preserve community structure.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is uploaded to github

The following data sets were generated

Article and author information

Author details

  1. Bidesh K Bera

    Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Omer Tzuk

    Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6541-3311
  3. Jamie J R Bennett

    Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9748-5010
  4. Ehud Meron

    Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
    For correspondence
    ehud@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3602-7411

Funding

Irsael Science Foundation (1053/17)

  • Bidesh K Bera

PBC Postdoctoral Fellowship

  • Bidesh K Bera

Kreitman Postdoctoral Fellowship

  • Jamie J R Bennett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernhard Schmid, University of Zurich, Switzerland

Version history

  1. Preprint posted: June 20, 2021 (view preprint)
  2. Received: September 13, 2021
  3. Accepted: September 19, 2021
  4. Accepted Manuscript published: September 27, 2021 (version 1)
  5. Version of Record published: October 7, 2021 (version 2)

Copyright

© 2021, Bera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,059
    views
  • 211
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bidesh K Bera
  2. Omer Tzuk
  3. Jamie J R Bennett
  4. Ehud Meron
(2021)
Linking spatial self-organization to community assembly and biodiversity
eLife 10:e73819.
https://doi.org/10.7554/eLife.73819

Share this article

https://doi.org/10.7554/eLife.73819

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.