Mammals adjust diel activity across gradients of urbanization

  1. Travis Gallo  Is a corresponding author
  2. Mason Fidino
  3. Brian Gerber
  4. Adam A Ahlers
  5. Julia L Angstmann
  6. Max Amaya
  7. Amy L Concilio
  8. David Drake
  9. Danielle Gay
  10. Elizabeth W Lehrer
  11. Maureen H Murray
  12. Travis J Ryan
  13. Colleen Cassady St. Clair
  14. Carmen M Salsbury
  15. Heather A Sander
  16. Theodore Stankowich
  17. Jaque Williamson
  18. J Amy Belaire
  19. Kelly Simon
  20. Seth B Magle
  1. George Mason University, United States
  2. Lincoln Park Zoo, United States
  3. University of Rhode Island, United States
  4. Kansas State University, United States
  5. Butler University, United States
  6. California State University, Long Beach, United States
  7. St. Edward's University, United States
  8. University of Wisconsin-Madison, United States
  9. City of Austin, United States
  10. University of Alberta, Canada
  11. University of Iowa, United States
  12. Brandywine Zoo, United States
  13. The Nature Conservancy, United States
  14. Texas Parks and Wildlife Department, United States

Abstract

Time is a fundamental component of ecological processes. How animal behavior changes over time has been explored through well-known ecological theories like niche partitioning and predator-prey dynamics. Yet, changes in animal behavior within the shorter 24-hour light-dark cycle have largely gone unstudied. Understanding if an animal can adjust their temporal activity to mitigate or adapt to environmental change has become a recent topic of discussion and is important for effective wildlife management and conservation. While spatial habitat is a fundamental consideration in wildlife management and conservation, temporal habitat is often ignored. We formulated a temporal resource selection model to quantify the diel behavior of eight mammal species across ten U.S. cities. We found high variability in diel activity patterns within and among species and species-specific correlations between diel activity and human population density, impervious land cover, available greenspace, vegetation cover, and mean daily temperature. We also found that some species may modulate temporal behaviors to manage both natural and anthropogenic risks. Our results highlight the complexity with which temporal activity patterns interact with local environmental characteristics, and suggest that urban mammals may use time along the 24-hour cycle to reduce risk, adapt, and therefore persist, and in some cases thrive, in human-dominated ecosystems.

Data availability

All related data and R scripts have been deposited at Dryad: https://doi.org/10.5061/dryad.fxpnvx0tb

The following data sets were generated

Article and author information

Author details

  1. Travis Gallo

    College of Science, George Mason University, Fairfax, United States
    For correspondence
    hgallo@gmu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2877-9848
  2. Mason Fidino

    Urban Wildlife Institute, Conservation and Science Department, Lincoln Park Zoo, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian Gerber

    Department of Natural Resource Science, University of Rhode Island, Kingston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9285-9784
  4. Adam A Ahlers

    Department of Horticulture and Natural Resources, Kansas State University, Manhattan, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia L Angstmann

    Department of Biological Sciences, Butler University, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Max Amaya

    Department of Biological Sciences, California State University, Long Beach, Long Beach, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Amy L Concilio

    Department of Environmental Science and Policy, St. Edward's University, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Drake

    Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Danielle Gay

    Austin Parks and Recreation, City of Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Elizabeth W Lehrer

    Urban Wildlife Institute, Conservation and Science Department, Lincoln Park Zoo, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Maureen H Murray

    Urban Wildlife Institute, Conservation and Science Department, Lincoln Park Zoo, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Travis J Ryan

    Department of Biological Sciences, Butler University, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2039-5989
  13. Colleen Cassady St. Clair

    Department of Biological Sciences, University of Alberta, Alberta, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Carmen M Salsbury

    Department of Biological Sciences, Butler University, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Heather A Sander

    Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Theodore Stankowich

    Department of Biological Sciences, California State University, Long Beach, Long Beach, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Jaque Williamson

    Department of Education and Conservation, Brandywine Zoo, Wilmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. J Amy Belaire

    The Nature Conservancy, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Kelly Simon

    Texas Parks and Wildlife Department, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9694-5548
  20. Seth B Magle

    Urban Wildlife Institute, Conservation and Science Department, Lincoln Park Zoo, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Abra Prentice-Wilkin Foundation

  • Travis Gallo
  • Mason Fidino
  • Elizabeth W Lehrer
  • Maureen H Murray
  • Seth B Magle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,301
    views
  • 448
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Travis Gallo
  2. Mason Fidino
  3. Brian Gerber
  4. Adam A Ahlers
  5. Julia L Angstmann
  6. Max Amaya
  7. Amy L Concilio
  8. David Drake
  9. Danielle Gay
  10. Elizabeth W Lehrer
  11. Maureen H Murray
  12. Travis J Ryan
  13. Colleen Cassady St. Clair
  14. Carmen M Salsbury
  15. Heather A Sander
  16. Theodore Stankowich
  17. Jaque Williamson
  18. J Amy Belaire
  19. Kelly Simon
  20. Seth B Magle
(2022)
Mammals adjust diel activity across gradients of urbanization
eLife 11:e74756.
https://doi.org/10.7554/eLife.74756

Share this article

https://doi.org/10.7554/eLife.74756

Further reading

    1. Ecology
    Hao Wang, Kai He ... Chaolun Li
    Research Article

    Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host–symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill’s structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host–symbiont interaction and the bivalves' environmental adaption mechanisms.

    1. Ecology
    Kim Schalcher, Estelle Milliet ... Emily LC Shepard
    Research Article

    Predator-prey arms races have led to the evolution of finely tuned disguise strategies. While the theoretical benefits of predator camouflage are well established, no study has yet been able to quantify its consequences for hunting success in natural conditions. We used high-resolution movement data to quantify how barn owls (Tyto alba) conceal their approach when using a sit-and-wait strategy. We hypothesized that hunting barn owls would modulate their landing force, potentially reducing noise levels in the vicinity of prey. Analysing 87,957 landings by 163 individuals equipped with GPS tags and accelerometers, we show that barn owls reduce their landing force as they approach their prey, and that landing force predicts the success of the following hunting attempt. Landing force also varied with the substrate, being lowest on man-made poles in field boundaries. The physical environment, therefore, affects the capacity for sound camouflage, providing an unexpected link between predator-prey interactions and land use. Finally, hunting strike forces in barn owls were the highest recorded in any bird, relative to body mass, highlighting the range of selective pressures that act on landings and the capacity of these predators to modulate their landing force. Overall, our results provide the first measurements of landing force in a wild setting, revealing a new form of motion-induced sound camouflage and its link to hunting success.