Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming

  1. Tom WN Walker  Is a corresponding author
  2. Konstantin Gavazov
  3. Thomas Guillaume
  4. Thibault Lambert
  5. Pierre Mariotte
  6. Devin Routh
  7. Constant Signarbieux
  8. Sebastián Block
  9. Tamara Münkemüller
  10. Hanna Nomoto
  11. Thomas W Crowther
  12. Andreas Richter
  13. Alexandre Buttler
  14. Jake Alexander
  1. ETH Zürich, Switzerland
  2. Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland
  3. Agroscope, Switzerland
  4. Université de Lausanne, Switzerland
  5. Princeton University, United States
  6. Université Grenoble Alpes, France
  7. University of Vienna, Austria
  8. École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Climate warming is releasing carbon from soils around the world1-3, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems4-9. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown10. Here we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% CIs) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.

Data availability

Data Availability: All data contributing to the findings of this study have been deposited in the OSF under the DOI 10.17605/OSF.IO/S54CH. All R scripts necessary to reproduce the findings of this study are available in the github repository tom-n-walker/uphill-plants-soil-carbon.

The following data sets were generated

Article and author information

Author details

  1. Tom WN Walker

    Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
    For correspondence
    thomas.walker@unine.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8095-6026
  2. Konstantin Gavazov

    Swiss Federal Institute for Forest, Snow and Landscape Research, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4479-7202
  3. Thomas Guillaume

    Field-Crop Systems and Plant Nutrition, Agroscope, Changins, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Thibault Lambert

    Faculty of Geosciences and the Environment, Université de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre Mariotte

    Field-Crop Systems and Plant Nutrition, Agroscope, Changins, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8570-8742
  6. Devin Routh

    Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Constant Signarbieux

    Swiss Federal Institute for Forest, Snow and Landscape Research, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Sebastián Block

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Tamara Münkemüller

    Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Hanna Nomoto

    Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas W Crowther

    Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Andreas Richter

    Centre of Microbiology & Environmental Systems, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Alexandre Buttler

    École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Jake Alexander

    Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Union Horizon 2020 (678841)

  • Jake Alexander

Swiss National Science Foundation (31003A-176044)

  • Tom WN Walker
  • Jake Alexander

Swiss National Science Foundation (PZ00P2-174047)

  • Konstantin Gavazov

Swiss National Science Foundation (31003A-173210)

  • Sebastián Block

French National Research Agency (ANR-20-CE02-0021)

  • Tamara Münkemüller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernhard Schmid, University of Zurich, Switzerland

Publication history

  1. Preprint posted: July 22, 2021 (view preprint)
  2. Received: March 11, 2022
  3. Accepted: May 6, 2022
  4. Accepted Manuscript published: May 12, 2022 (version 1)
  5. Version of Record published: June 13, 2022 (version 2)

Copyright

© 2022, Walker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 570
    Page views
  • 199
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom WN Walker
  2. Konstantin Gavazov
  3. Thomas Guillaume
  4. Thibault Lambert
  5. Pierre Mariotte
  6. Devin Routh
  7. Constant Signarbieux
  8. Sebastián Block
  9. Tamara Münkemüller
  10. Hanna Nomoto
  11. Thomas W Crowther
  12. Andreas Richter
  13. Alexandre Buttler
  14. Jake Alexander
(2022)
Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming
eLife 11:e78555.
https://doi.org/10.7554/eLife.78555
  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Julian Melgar, Mads F Schou ... Charlie K Cornwallis
    Research Article

    Cooperative breeding allows the costs of parental care to be shared, but as groups become larger, such benefits often decline as competition increases and group cohesion breaks down. The counteracting forces of cooperation and competition are predicted to select for an optimal group size, but variation in groups is ubiquitous across cooperative breeding animals. Here, we experimentally test if group sizes vary because of sex differences in the costs and benefits of cooperative breeding in captive ostriches, Struthio camelus, and compare this to the distribution of group sizes in the wild. We established 96 groups with different numbers of males (1 or 3) and females (1, 3, 4, or 6) and manipulated opportunities for cooperation over incubation. There was a clear optimal group size for males (one male with four or more females) that was explained by high costs of competition and negligible benefits of cooperation. Conversely, female reproductive success was maximised across a range of group sizes due to the benefits of cooperation with male and female group members. Reproductive success in intermediate sized groups was low for both males and females due to sexual conflict over the timing of mating and incubation. Our experiments show that sex differences in cooperation and competition can explain group size variation in cooperative breeders.

    1. Ecology
    2. Evolutionary Biology
    Nicholas M Grebe, Jean Paul Hirwa ... Stacy Rosenbaum
    Research Article Updated

    Evolutionary theories predict that sibling relationships will reflect a complex balance of cooperative and competitive dynamics. In most mammals, dispersal and death patterns mean that sibling relationships occur in a relatively narrow window during development and/or only with same-sex individuals. Besides humans, one notable exception is mountain gorillas, in which non-sex-biased dispersal, relatively stable group composition, and the long reproductive tenures of alpha males mean that animals routinely reside with both maternally and paternally related siblings, of the same and opposite sex, throughout their lives. Using nearly 40,000 hr of behavioral data collected over 14 years on 699 sibling and 1235 non-sibling pairs of wild mountain gorillas, we demonstrate that individuals have strong affiliative preferences for full and maternal siblings over paternal siblings or unrelated animals, consistent with an inability to discriminate paternal kin. Intriguingly, however, aggression data imply the opposite. Aggression rates were statistically indistinguishable among all types of dyads except one: in mixed-sex dyads, non-siblings engaged in substantially more aggression than siblings of any type. This pattern suggests mountain gorillas may be capable of distinguishing paternal kin but nonetheless choose not to affiliate with them over non-kin. We observe a preference for maternal kin in a species with a high reproductive skew (i.e. high relatedness certainty), even though low reproductive skew (i.e. low relatedness certainty) is believed to underlie such biases in other non-human primates. Our results call into question reasons for strong maternal kin biases when paternal kin are identifiable, familiar, and similarly likely to be long-term groupmates, and they may also suggest behavioral mismatches at play during a transitional period in mountain gorilla society.