Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks

  1. Ting Tang
  2. Naili Zhang
  3. Franca J Bongers
  4. Michael Staab
  5. Andreas Schuldt
  6. Felix Fornoff
  7. Hong Lin
  8. Jeannine Cavender-Bares
  9. Andrew L Hipp
  10. Shan Li
  11. Yu Liang
  12. Baocai Han
  13. Alexandra-Maria Klein
  14. Helge Bruelheide
  15. Walter Durka
  16. Bernhard Schmid  Is a corresponding author
  17. Keping Ma  Is a corresponding author
  18. Xiaojuan Liu  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Beijing Forestry University, China
  3. Technical University Darmstadt, Germany
  4. Georg-August-University Göttingen, Germany
  5. University of Freiburg, Germany
  6. Nanjing Xiaozhuang University, China
  7. University of Minnesota, United States
  8. Morton Arboretum, United States
  9. Martin Luther University Halle-Wittenberg, Germany
  10. Helmholtz Centre for Environmental Research, Germany
  11. University of Zurich, Switzerland

Abstract

Addressing global biodiversity loss requires an expanded focus on multiple dimensions of biodiversity. While most studies have focused on the consequences of plant interspecific diversity, our mechanistic understanding of how genetic diversity within plant species affects plant productivity remains limited. Here, we use a tree species × genetic diversity experiment to disentangle the effects of species diversity and genetic diversity, and how they are related to tree functional diversity and trophic feedbacks. We found that tree species diversity increased tree productivity via increased tree functional diversity, reduced soil fungal diversity and marginally reduced herbivory. The effects of tree genetic diversity on productivity via functional diversity and soil fungal diversity were negative in monocultures but positive in the mixture of the four tree species tested. Given the complexity of interactions between species and genetic diversity, tree functional diversity and trophic feedbacks on productivity, we suggest that both tree species and genetic diversity should be considered in afforestation.

Data availability

All numerical data were used to generate the figures that have been deposited in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Ting Tang

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  2. Naili Zhang

    College of Forestry, Beijing Forestry University, Beijing, China
    Competing interests
    No competing interests declared.
  3. Franca J Bongers

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  4. Michael Staab

    Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
    Competing interests
    No competing interests declared.
  5. Andreas Schuldt

    Forest Nature Conservation, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    No competing interests declared.
  6. Felix Fornoff

    Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0446-7153
  7. Hong Lin

    Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
    Competing interests
    No competing interests declared.
  8. Jeannine Cavender-Bares

    Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, United States
    Competing interests
    No competing interests declared.
  9. Andrew L Hipp

    Morton Arboretum, Lisle, United States
    Competing interests
    No competing interests declared.
  10. Shan Li

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  11. Yu Liang

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4259-6028
  12. Baocai Han

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  13. Alexandra-Maria Klein

    Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  14. Helge Bruelheide

    Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
    Competing interests
    No competing interests declared.
  15. Walter Durka

    Department of Community Ecology, Helmholtz Centre for Environmental Research, Halle, Germany
    Competing interests
    No competing interests declared.
  16. Bernhard Schmid

    Department of Geography, University of Zurich, Zurich, Switzerland
    For correspondence
    bernhard.schmid@geo.uzh.ch
    Competing interests
    Bernhard Schmid, Reviewing editor, eLife.
  17. Keping Ma

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    For correspondence
    kpma@ibcas.ac.cn
    Competing interests
    No competing interests declared.
  18. Xiaojuan Liu

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    For correspondence
    liuxiaojuan06@ibcas.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9292-4432

Funding

National Natural Science Foundation of China (31870409)

  • Ting Tang
  • Franca J Bongers
  • Xiaojuan Liu

Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000)

  • Naili Zhang
  • Xiaojuan Liu

National Natural Science Foundation of China (32161123003)

  • Naili Zhang
  • Yu Liang
  • Keping Ma
  • Xiaojuan Liu

Younth Innovation Promotion Association CAS (2019082)

  • Xiaojuan Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David A. Donoso, Escuela Politécnica Nacional, Ecuador

Version history

  1. Received: March 17, 2022
  2. Preprint posted: March 28, 2022 (view preprint)
  3. Accepted: November 14, 2022
  4. Accepted Manuscript published: November 29, 2022 (version 1)
  5. Version of Record published: December 15, 2022 (version 2)

Copyright

© 2022, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,612
    views
  • 395
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ting Tang
  2. Naili Zhang
  3. Franca J Bongers
  4. Michael Staab
  5. Andreas Schuldt
  6. Felix Fornoff
  7. Hong Lin
  8. Jeannine Cavender-Bares
  9. Andrew L Hipp
  10. Shan Li
  11. Yu Liang
  12. Baocai Han
  13. Alexandra-Maria Klein
  14. Helge Bruelheide
  15. Walter Durka
  16. Bernhard Schmid
  17. Keping Ma
  18. Xiaojuan Liu
(2022)
Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks
eLife 11:e78703.
https://doi.org/10.7554/eLife.78703

Share this article

https://doi.org/10.7554/eLife.78703

Further reading

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article Updated

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push–pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop’s constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize–Desmodium push–pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.

    1. Ecology
    Songdou Zhang, Shiheng An
    Insight

    The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.