Ocean acidification increases susceptibility to sub-zero air temperatures in ecosystem engineers and limit poleward range shifts

  1. Jakob Thyrring  Is a corresponding author
  2. Colin D Macleod
  3. Katie E Marshall
  4. Jessica Kennedy
  5. Réjean Tremblay
  6. Christopher DG Harley
  1. Aarhus University, Denmark
  2. University of Alberta, Canada
  3. University of British Columbia, Canada
  4. Université du Québec à Rimouski, Canada

Abstract

Ongoing climate change has caused rapidly increasing temperatures, and an unprecedented decline in seawater pH, known as ocean acidification. Increasing temperatures are redistributing species towards higher and cooler latitudes which are most affected by ocean acidification. Whilst the persistence of intertidal species in cold environments is related to their capacity to resist sub-zero air temperatures, studies have never considered the interacting impacts of ocean acidification and freeze stress on species survival and distribution. Here, a full-factorial experiment was used to study whether ocean acidification increases mortality in subtidal Mytilus trossulus and subtidal M. galloprovincialis, and intertidal M. trossulus following sub-zero air temperature exposure. We examined physiological processes behind variation in freeze tolerance using 1H NMR metabolomics, analyses of fatty acids, and amino acid composition. We show that low pH conditions (pH = 7.5) significantly decrease freeze tolerance in both intertidal and subtidal populations of Mytilus spp. Under current day pH conditions (pH = 7.9), intertidal M. trossulus was more freeze tolerant than subtidal M. trossulus and subtidal M. galloprovincialis. Conversely, under low pH conditions, subtidal M. trossulus was more freeze tolerant than the other mussel categories. Differences in the concentration of various metabolites (cryoprotectants), or in the composition of amino acids and cell membrane phospholipid fatty acids could not explain the decrease in survival. These results suggest that ocean acidification can offset the poleward range expansions facilitated by warming, and that reduced freeze tolerance could result in a range contraction if temperatures become lethal at the equatorward edge.

Data availability

All data produced and needed to replicate the work is deposited freely on the borealis data verse (https://borealisdata.ca) - https://doi.org/10.5683/SP3/DQ5PMQ

The following data sets were generated

Article and author information

Author details

  1. Jakob Thyrring

    Department of Ecoscience, Aarhus University, Aarhus C, Denmark
    For correspondence
    thyrring@ecos.au.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1029-3105
  2. Colin D Macleod

    Department of Biological Sciences, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Katie E Marshall

    Department of Zoology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica Kennedy

    Department of Zoology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Réjean Tremblay

    Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher DG Harley

    Department of Zoology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 Marie Skłodowska-Curie Actions (797387)

  • Jakob Thyrring

Danmarks Frie Forskningsfond (7027-00060B)

  • Jakob Thyrring

Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-04239)

  • Katie E Marshall

Carlsbergfondet (CF21-0564)

  • Jakob Thyrring

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Thyrring et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 670
    views
  • 87
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jakob Thyrring
  2. Colin D Macleod
  3. Katie E Marshall
  4. Jessica Kennedy
  5. Réjean Tremblay
  6. Christopher DG Harley
(2023)
Ocean acidification increases susceptibility to sub-zero air temperatures in ecosystem engineers and limit poleward range shifts
eLife 12:e81080.
https://doi.org/10.7554/eLife.81080

Share this article

https://doi.org/10.7554/eLife.81080

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.