Engineering multifunctional rhizosphere probiotics using consortia of Bacillus amyloliquefaciens transposon insertion mutants

Abstract

While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth-promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth-promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth-promotion in agricultural systems.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided in Source data 1

Article and author information

Author details

  1. Jingxuan Li

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Chunlan Yang

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandre Jousset

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Keming Yang

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaofang Wang

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhihui Xu

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3987-8836
  7. Tianjie Yang

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xinlan Mei

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zengtao Zhong

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yangchun Xu

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Qirong Shen

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Ville-Petri Friman

    Department of Microbiology, University of Helsinki, Helsinki, Finland
    For correspondence
    ville-petri.friman@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
  13. Zhong Wei

    Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
    For correspondence
    weizhong@njau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7967-4897

Funding

National Key Research and Development Program of China (2021YFD1900100)

  • Zhong Wei

Royal Society Research Grants (CHL\R1\180031)

  • Ville-Petri Friman

Strategic Priorities Fund Plant Bacterial Diseases programme (BB/T010606/1)

  • Ville-Petri Friman

National Key Research and Development Program of China (2022YFF1001804)

  • Xiaofang Wang

National Key Research and Development Program of China (2022YFD1500202)

  • Tianjie Yang

National Natural Science Foundation of China (42325704)

  • Zhong Wei

National Natural Science Foundation of China (42090064)

  • Qirong Shen

National Natural Science Foundation of China (41922053)

  • Zhong Wei

National Natural Science Foundation of China (31972504)

  • Yangchun Xu

Fundamental Research Funds for the Central Universities (KYT2023001)

  • Zhong Wei

Royal Society Research Grants (RSG\R1\180213)

  • Ville-Petri Friman

These funders supported study design, data collection and interpretation, and the decision to submit the work for publication.

Copyright

© 2023, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,165
    views
  • 295
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingxuan Li
  2. Chunlan Yang
  3. Alexandre Jousset
  4. Keming Yang
  5. Xiaofang Wang
  6. Zhihui Xu
  7. Tianjie Yang
  8. Xinlan Mei
  9. Zengtao Zhong
  10. Yangchun Xu
  11. Qirong Shen
  12. Ville-Petri Friman
  13. Zhong Wei
(2023)
Engineering multifunctional rhizosphere probiotics using consortia of Bacillus amyloliquefaciens transposon insertion mutants
eLife 12:e90726.
https://doi.org/10.7554/eLife.90726

Share this article

https://doi.org/10.7554/eLife.90726

Further reading

    1. Ecology
    Hao Wang, Kai He ... Chaolun Li
    Research Article

    Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host–symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill’s structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host–symbiont interaction and the bivalves' environmental adaption mechanisms.

    1. Ecology
    Kim Schalcher, Estelle Milliet ... Emily LC Shepard
    Research Article

    Predator-prey arms races have led to the evolution of finely tuned disguise strategies. While the theoretical benefits of predator camouflage are well established, no study has yet been able to quantify its consequences for hunting success in natural conditions. We used high-resolution movement data to quantify how barn owls (Tyto alba) conceal their approach when using a sit-and-wait strategy. We hypothesized that hunting barn owls would modulate their landing force, potentially reducing noise levels in the vicinity of prey. Analysing 87,957 landings by 163 individuals equipped with GPS tags and accelerometers, we show that barn owls reduce their landing force as they approach their prey, and that landing force predicts the success of the following hunting attempt. Landing force also varied with the substrate, being lowest on man-made poles in field boundaries. The physical environment, therefore, affects the capacity for sound camouflage, providing an unexpected link between predator-prey interactions and land use. Finally, hunting strike forces in barn owls were the highest recorded in any bird, relative to body mass, highlighting the range of selective pressures that act on landings and the capacity of these predators to modulate their landing force. Overall, our results provide the first measurements of landing force in a wild setting, revealing a new form of motion-induced sound camouflage and its link to hunting success.