A dedicated visual pathway for prey detection in larval zebrafish

Abstract

Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, which was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response.

Article and author information

Author details

  1. Julia L Semmelhack

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph C Donovan

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tod R Thiele

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Enrico Kuehn

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Eva Laurell

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Herwig Baier

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    For correspondence
    hbaier@neuro.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ole Kiehn, Karolinska Institute, Sweden

Ethics

Animal experimentation: All animal procedures conformed to the institutional guidelines of the Max Planck Society and the local government (Regierung von Oberbayern). The protocol (55.2-1-54-2532-101-12) was approved by the Regierung Oberbayern.

Version history

  1. Received: September 23, 2014
  2. Accepted: December 8, 2014
  3. Accepted Manuscript published: December 9, 2014 (version 1)
  4. Accepted Manuscript updated: December 12, 2014 (version 2)
  5. Version of Record published: January 2, 2015 (version 3)

Copyright

© 2014, Semmelhack et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,974
    views
  • 1,424
    downloads
  • 148
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia L Semmelhack
  2. Joseph C Donovan
  3. Tod R Thiele
  4. Enrico Kuehn
  5. Eva Laurell
  6. Herwig Baier
(2014)
A dedicated visual pathway for prey detection in larval zebrafish
eLife 3:e04878.
https://doi.org/10.7554/eLife.04878

Share this article

https://doi.org/10.7554/eLife.04878

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.