Abstract

The striatum is an input structure of the basal ganglia implicated in several time-dependent functions including reinforcement learning, decision making, and interval timing. To determine whether striatal ensembles drive subjects' judgments of duration, we manipulated and recorded from striatal neurons in rats performing a duration categorization psychophysical task. We found that the dynamics of striatal neurons predicted duration judgments, and that simultaneously recorded ensembles could judge duration as well as the animal. Furthermore, striatal neurons were necessary for duration judgments, as muscimol infusions produced a specific impairment in animals' duration sensitivity. Lastly, we show that time as encoded by striatal populations ran faster or slower when rats judged a duration as longer or shorter, respectively. These results demonstrate that the speed with which striatal population state changes supports the fundamental ability of animals to judge the passage of time.

Article and author information

Author details

  1. Thiago S Gouvêa

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Tiago Monteiro

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Asma Motiwala

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. Sofia Soares

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Machens

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Joseph J Paton

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    joe.paton@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy Behrens, Oxford University, United Kingdom

Ethics

Animal experimentation: All experiments were in accordance with the European Union Directive 86/609/EEC and approved by the Portuguese Veterinary General Board (Direcção-Geral de Veterinária, project approval 014303 - 0420/000/000/2011)

Version history

  1. Received: September 3, 2015
  2. Accepted: December 7, 2015
  3. Accepted Manuscript published: December 7, 2015 (version 1)
  4. Version of Record published: January 12, 2016 (version 2)

Copyright

© 2015, Gouvêa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,564
    views
  • 1,319
    downloads
  • 138
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thiago S Gouvêa
  2. Tiago Monteiro
  3. Asma Motiwala
  4. Sofia Soares
  5. Christian Machens
  6. Joseph J Paton
(2015)
Striatal dynamics explain duration judgments
eLife 4:e11386.
https://doi.org/10.7554/eLife.11386

Share this article

https://doi.org/10.7554/eLife.11386

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.