Abstract

The striatum is an input structure of the basal ganglia implicated in several time-dependent functions including reinforcement learning, decision making, and interval timing. To determine whether striatal ensembles drive subjects' judgments of duration, we manipulated and recorded from striatal neurons in rats performing a duration categorization psychophysical task. We found that the dynamics of striatal neurons predicted duration judgments, and that simultaneously recorded ensembles could judge duration as well as the animal. Furthermore, striatal neurons were necessary for duration judgments, as muscimol infusions produced a specific impairment in animals' duration sensitivity. Lastly, we show that time as encoded by striatal populations ran faster or slower when rats judged a duration as longer or shorter, respectively. These results demonstrate that the speed with which striatal population state changes supports the fundamental ability of animals to judge the passage of time.

Article and author information

Author details

  1. Thiago S Gouvêa

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Tiago Monteiro

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Asma Motiwala

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. Sofia Soares

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Machens

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Joseph J Paton

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    joe.paton@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy Behrens, Oxford University, United Kingdom

Ethics

Animal experimentation: All experiments were in accordance with the European Union Directive 86/609/EEC and approved by the Portuguese Veterinary General Board (Direcção-Geral de Veterinária, project approval 014303 - 0420/000/000/2011)

Version history

  1. Received: September 3, 2015
  2. Accepted: December 7, 2015
  3. Accepted Manuscript published: December 7, 2015 (version 1)
  4. Version of Record published: January 12, 2016 (version 2)

Copyright

© 2015, Gouvêa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,553
    views
  • 1,317
    downloads
  • 135
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thiago S Gouvêa
  2. Tiago Monteiro
  3. Asma Motiwala
  4. Sofia Soares
  5. Christian Machens
  6. Joseph J Paton
(2015)
Striatal dynamics explain duration judgments
eLife 4:e11386.
https://doi.org/10.7554/eLife.11386

Share this article

https://doi.org/10.7554/eLife.11386

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.