On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus

  1. Robson Scheffer-Teixeira
  2. Adriano BL Tort  Is a corresponding author
  1. Federal University of Rio Grande do Norte, Brazil

Abstract

Phase-amplitude coupling between theta and multiple gamma sub-bands is a hallmark of hippocampal activity and believed to take part in information routing. More recently, theta and gamma oscillations were also reported to exhibit phase-phase coupling, or n:m phase-locking, suggesting an important mechanism of neuronal coding that has long received theoretical support. However, by analyzing simulated and actual LFPs, here we question the existence of theta-gamma phase-phase coupling in the rat hippocampus. We show that the quasi-linear phase shifts introduced by filtering lead to spurious coupling levels in both white noise and hippocampal LFPs, which highly depend on epoch length, and that significant coupling may be falsely detected when employing improper surrogate methods. We also show that waveform asymmetry and frequency harmonics may generate artifactual n:m phase-locking. Studies investigating phase-phase coupling should rely on appropriate statistical controls and be aware of confounding factors; otherwise, they could easily fall into analysis pitfalls.

Data availability

The following data sets were generated
    1. Scheffer-Teixeira R
    2. Tort A.
    (2016) Multisite LFP recordings from the rat hippocampus during REM sleep
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication.
The following previously published data sets were used

Article and author information

Author details

  1. Robson Scheffer-Teixeira

    Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Adriano BL Tort

    Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
    For correspondence
    tort@neuro.ufrn.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9877-7816

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico

  • Robson Scheffer-Teixeira
  • Adriano BL Tort

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

  • Robson Scheffer-Teixeira
  • Adriano BL Tort

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, University Health Network, Canada

Ethics

Animal experimentation: All procedures were approved by our local institutional ethics committee (Comissão de Ética no Uso de Animais - CEUA/UFRN, protocol number 060/2011) and were in accordance with the National Institutes of Health guidelines.

Version history

  1. Received: August 10, 2016
  2. Accepted: December 5, 2016
  3. Accepted Manuscript published: December 7, 2016 (version 1)
  4. Version of Record published: December 29, 2016 (version 2)

Copyright

© 2016, Scheffer-Teixeira & Tort

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,840
    views
  • 1,048
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robson Scheffer-Teixeira
  2. Adriano BL Tort
(2016)
On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus
eLife 5:e20515.
https://doi.org/10.7554/eLife.20515

Share this article

https://doi.org/10.7554/eLife.20515

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.