On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus

  1. Robson Scheffer-Teixeira
  2. Adriano BL Tort  Is a corresponding author
  1. Federal University of Rio Grande do Norte, Brazil

Abstract

Phase-amplitude coupling between theta and multiple gamma sub-bands is a hallmark of hippocampal activity and believed to take part in information routing. More recently, theta and gamma oscillations were also reported to exhibit phase-phase coupling, or n:m phase-locking, suggesting an important mechanism of neuronal coding that has long received theoretical support. However, by analyzing simulated and actual LFPs, here we question the existence of theta-gamma phase-phase coupling in the rat hippocampus. We show that the quasi-linear phase shifts introduced by filtering lead to spurious coupling levels in both white noise and hippocampal LFPs, which highly depend on epoch length, and that significant coupling may be falsely detected when employing improper surrogate methods. We also show that waveform asymmetry and frequency harmonics may generate artifactual n:m phase-locking. Studies investigating phase-phase coupling should rely on appropriate statistical controls and be aware of confounding factors; otherwise, they could easily fall into analysis pitfalls.

Data availability

The following data sets were generated
    1. Scheffer-Teixeira R
    2. Tort A.
    (2016) Multisite LFP recordings from the rat hippocampus during REM sleep
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication.
The following previously published data sets were used

Article and author information

Author details

  1. Robson Scheffer-Teixeira

    Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Adriano BL Tort

    Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
    For correspondence
    tort@neuro.ufrn.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9877-7816

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico

  • Robson Scheffer-Teixeira
  • Adriano BL Tort

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

  • Robson Scheffer-Teixeira
  • Adriano BL Tort

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by our local institutional ethics committee (Comissão de Ética no Uso de Animais - CEUA/UFRN, protocol number 060/2011) and were in accordance with the National Institutes of Health guidelines.

Copyright

© 2016, Scheffer-Teixeira & Tort

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,663
    views
  • 1,109
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robson Scheffer-Teixeira
  2. Adriano BL Tort
(2016)
On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus
eLife 5:e20515.
https://doi.org/10.7554/eLife.20515

Share this article

https://doi.org/10.7554/eLife.20515

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.