Switching off nicotine appeal

A new nanotechnology targets chemical receptors in the rodent brain that contribute to nicotine addiction.

A new technology uses light to target nicotine receptors. Under purple light, a ‘light switch’ gets twisted (cis) and kicks nicotine out of its binding pocket. Image credit: Mourot et al. 2018 (CC BY 4.0)

Acetylcholine is one of the most abundant chemicals in the brain, with key roles in learning, memory and attention. Neurons throughout the brain use acetylcholine to exchange messages. Acetylcholine binds to two different classes of receptors on neurons: nicotinic and muscarinic. As the name suggests, nicotinic receptors also respond to nicotine, the main addictive substance in tobacco, while muscarinic receptors respond to muscarine, present in certain poisonous mushrooms.

Nicotinic and muscarinic receptors each consist of many different subtypes. But standard pharmacology techniques cannot discriminate between the effects of acetylcholine binding to these different subtypes. Likewise, they cannot distinguish between acetylcholine binding to the same receptor subtype on different neurons. Durand-de Cuttoli, Mondoloni et al. have now developed a new nanotechnology that uses light to target specific acetylcholine receptor subtypes in freely moving mice.

The technology was tested in a brain region called the VTA, which is part of the brain’s reward system. Experiments showed that when acetylcholine binds to a specific subtype of nicotinic receptors on VTA neurons – called β2-containing receptors – it makes the neurons release the brain's reward signal, dopamine. Switching these receptors on and off changed how the mice responded to nicotine. With the receptors switched on, mice preferred locations associated with nicotine. Switching the receptors off removed this preference. Nicotine may thus be addictive in part because it triggers VTA neurons to release dopamine via its actions on β2-containing nicotinic receptors.

This new technology will help reveal the mechanisms of action of acetylcholine and nicotine. Blocking the effects of nicotine at a specific time and place in the mouse brain may uncover the receptors and brain regions that drive nicotine consumption. Smoking remains a major cause of preventable death worldwide. This new approach could help us develop strategies to prevent or treat addiction.