What is the quietest sound the ear can detect? All sounds begin as vibrating air molecules, which enter the ear and cause the eardrum to vibrate. We can detect vibrations that move the eardrum by a distance of less than one picometer. That’s one thousandth of a nanometer, or about 100 times smaller than a hydrogen atom. But how does the ear achieve this level of sensitivity?
Vibrations of the eardrum cause three small bones within the middle ear to vibrate. The vibrations then spread to the cochlea, a fluid-filled spiral structure in the inner ear. Tiny hair cells lining the cochlea move as a result of the vibrations. There are two types of hair cells: inner and outer. Outer hair cells amplify the vibrations. It is this amplification that enables us to detect such small movements of the eardrum. Inner hair cells then convert the amplified vibrations into electrical signals, which travel via the auditory nerve to the brain.
The bases of outer hair cells are connected to a structure called the basilar membrane, while their tops are anchored to a structure called the reticular lamina. It was generally assumed that outer hair cells amplify vibrations of the basilar membrane via a local positive feedback mechanism that requires the hair cells to vibrate first. But by comparing the timing of reticular lamina and basilar membrane vibrations in gerbils, He et al. show that this is not the case. Outer hair cells vibrate after the basilar membrane, not before. This indicates that outer hair cells use a mechanism other than commonly assumed local feedback to amplify sounds.
The results presented by He et al. change our understanding of how the cochlea works, and may help bioengineers to design better hearing aids and cochlea implants. Millions of patients worldwide who suffer from hearing loss may ultimately stand to benefit.