Plants solve ancient problem in two different ways

Liverworts and flowering plants rely on conserved genes to form structures crucial to life on land, but they regulate these genes in completely different ways.

Liverworts are small, flowerless, green plants that occur in moist habitats. Image credit: AJC1 (CC BY-SA 2.0)

Plants colonised the land sometime more than 500 million years ago. The ancestors of the first land plants were algae that were most likely simple with a few different types of cell. Yet, when faced with the challenges of life on land, plants evolved new cell types and specialised structures with roles such as anchorage, nutrient uptake and gas exchange.

Many of these specialised structures, including the root hairs and rhizoids that allow plants to collect water and minerals from the soil, first develop as outgrowths from cells in the outer layer of the plant. An ancient and conserved mechanism activates the development of these outgrowths via genes belonging to a group known as RSL class I.

In the flowering plant Arabidopsis thaliana, a protein switches off RSL class I genes in a subset of these outer cells, to stop too many root hairs forming. To see whether this kind of negative regulation is also conserved among land plants, Honkanen et al. looked for regulators of RSL class I genes in liverworts. Small and without flowers, liverworts are a group of plants that first appeared during the earliest stages of land plant evolution.

Honkanen et al. discovered that RSL class I genes in liverworts are negatively regulated by a molecule named FEW RHIZOIDS1 (or FRH1). However, rather than being a protein, FRH1 is a microRNA – a short strand of genetic code that reduces how much protein is produced from a given gene. The FRH1 microRNA is conserved among liverworts and most likely evolved very early in the history of these plants. The findings indicate that different groups of land plants have evolved different negative regulators to control the conserved genes behind some of the specialised structures crucial to life on land.