There's more than one way to evolve and fuel a big brain

Humans have an essential gene to power the brain through starvation – but other species maintain large brains perfectly well without it.

Certain fruit bats have larger brains than expected for their body size. Image credit: _paVan_ (CC BY 2.0)

Our brain requires a lot of energy to work properly. Sugars are usually the main type of fuel for the body, but when they run low – for example during a food shortage – fat, in the form of fatty acids, can be used instead. However, the brain cannot directly process these molecules; instead, fatty acids need to go through ketogenesis, a process that turns fat into ketone bodies, which the organ can then burn. Scientists believe that the ability to create ketone bodies was essential for us to evolve large brains. Yet, it is still unclear if all mammals can transform fatty acids into ketone bodies. One way to look into this question is to track whether other species have HMGCS2, the main enzyme that drives ketogenesis.

Jebb and Hiller examined the genomes of 70 different species of mammals for the gene that codes for HMGCS2. The comparisons revealed that cetaceans (whales, dolphins and porpoises), Old World fruit bats and the African savanna elephant have all independently lost their working version of HMGCS2. Yet, many members of these three groups have evolved brains that are large for their body size. The genetic analyses showed that dolphins and elephants developed big brains after the enzyme became inactive, challenging the idea that HMGCS2 – and by extension ketogenesis – is always required for the evolution of large brains.

These results may also be useful for conservation efforts. Many fruit bats across the world are severely threatened, and their lack of ketogenesis could explain why these animals are highly sensitive to starvation and quickly die when food becomes scarce.