All change for LEAFY

As land plants evolved, the LEAFY gene switched from a general role in stimulating cells to divide to a more specialist role in making flowers.

Ceratopteris richardii. Image credit: Steven J Baskauf (CC BY-NC-SA 3.0)

The first plants colonized land around 500 million years ago. These plants had simple shoots with no branches, similar to the mosses that live today. Later on, some plants evolved more complex structures including branched shoots and flowers (collectively known as the “flowering plants”). Ferns are a group of plants that evolved midway between the mosses and flowering plants and have branched shoots but no flowers.

The gradual transition from simple to more complex plant structures required changes to the way in which cells divide and grow within plant shoots. Whereas animals produce new cells throughout their body, most plant cells divide in areas known as meristems. All plants grow from embryos, which contain meristems that will form the roots and shoots of the mature plant. A gene called LEAFY is required for cells in moss embryos to divide. However, in flowering plants LEAFY does not carry out this role, instead it is only required to make the meristems that produce flowers.

How did LEAFY transition from a general role in embryos to a more specialized role in making flowers? To address this question, Plackett, Conway et al. studied the two LEAFY genes in a fern called Ceratopteris richardii. The experiments showed that at least one of these LEAFY genes was active in the meristems of fern shoots throughout the lifespan of the plant. The shoots of ferns with less active LEAFY genes could not form the leaves seen in normal C. richardii plants. This suggests that as land plants evolved, the role of LEAFY changed from forming embryos to forming complex shoot structures.

Most of our major crops are flowering plants. By understanding how the role of LEAFY has changed over the evolution of land plants, it might be possible to manipulate LEAFY genes in crop plants to alter shoot structures to better suit specific environments.