How a blood cancer can resist drugs

Two enzymes critical for protein degradation can determine how cancers respond to certain drugs.

Multiple myeloma. Image credit: KGH (CC BY-SA 3.0)

Cells routinely breakdown damaged or unwanted proteins to recycle their building blocks. In humans, most of these unwanted proteins are first tagged with a chain of smaller proteins called ubiquitin, in a process known as ubiquitination. Three kinds of enzymes – named E1, E2 and E3 – act one after the other to recruit and transfer ubiquitin onto the protein. Any problem with this protein-disposal system may cause diseases including cancers.

Several drugs such as thalidomide are known to hijack the ubiquitination process by binding to the E3 enzyme. Instead of targeting unwanted proteins, the E3 enzyme-drug complex targets proteins that are driving a disease. These drugs are particularly useful for treating blood cancers. The problem is patients often become resistant to these drugs, and not always because the activity of the E3 enzyme is impaired. An alternative suspect would be an E2 enzyme, but the role of these enzymes remains unclear.

Lu et al. have now asked whether a faulty E2 enzyme can lead to drug resistance in a form of blood cancer called multiple myeloma. The experiments tested how proteins relevant for the growth of cancerous myeloma cells were degraded in the presence of different drugs. Genes for the E2 enzymes were inactivated one at a time using a gene editing approach to see which ones would affect the degradation of the proteins and result in drug resistance. Two E2 enzymes, UBE2G1 and UBE2D3, were found to be critical.

UBE2D3 first links the disease-driving proteins with one ubiquitin before UBE2G1 can subsequently assemble a chain of ubiquitin proteins. If either of these E2 enzymes was missing from myeloma cells treated with drugs, the disease-driving proteins could not be properly tagged with ubiquitin. This interfered with the degradation of the proteins and allowed the myeloma cells to continue to grow. Yet, myeloma cells that did not have UBE2G1 and were resistant to certain drugs could still respond to other more potent drugs. This suggests that the success of the drugs depends on UBE2G1. Therefore, a better understanding of the activity of this E2 enzyme may be useful for the development of future anticancer drugs.