Eavesdropping on an infection

Gene network analysis allows scientists to listen in on the molecular communication between a fungus and an infected plant.

Arabidopsis offers important advantages for basic research in genetics and molecular biology. Image credit: Carl Davies, CSIRO (CC BY 3.0)

Infections are complex interactions between two organisms. When a disease-causing microbe and a potential host engage, molecules continuously flow in both directions. This creates an inter-connected loop of messages and counter-messages, attacks, counter-attacks and resistance. This communication determines the final winner and the outcome of the disease. Yet it is technically difficult to measure it from both organisms at the same time, mostly because it is often impossible to tell whether a given molecule came from the microbe or the host. As such, little is known about how most infections play out at the molecular level.

Now, rather than looking directly at the communication molecules, Zhang et al. have measured the active genes in samples of a plant infected with a fungus. While a molecule released by the plant may be indistinguishable from one from the fungus, the genes needed to make those molecules will be different in each species. The experiments involved two species where databases of gene sequences already exist: Arabidopsis thaliana, a plant often used in laboratory studies, and a fungus known as Botrytis cinerea, which infects many plants.

Zhang et al. showed that the interactions between the two organisms are diverse and, rather than single genes, they largely involve sets of genes that are all switched on together as so-called gene co-expression networks (or GCNs for short). Ten of these networks encoded mechanisms that allow the fungus to attack plant hosts. Further analysis identified potential connections between networks of genes in the plant and fungus. These connections may reveal some of the targets of the fungus’s toxins or counter mechanisms that plants can use to attempt to defend themselves.

These findings show that it is possible to listen to the molecular communication between two organisms during an infection. In the future, a similar approach may make it possible to ask if a host plant communicates with all of its possible disease-causing microbes with a few distinct pathways, or if instead, hosts have the flexibility to uniquely communicate with each microbe in a different way.