The fossil record is full of life

Unique communities of microbes are responsible for biological material discovered in some fossils.
  • Views 388
  • Annotations

Vessel-like structures and fibrous masses from demineralized dinosaur bone stain red for DNA presence, indicating recent contamination by a biofilm. Image credit: Saitta et al. (CC BY 4.0)

The chances of establishing a real-world Jurassic Park are slim. During the fossilization process, biological tissues degrade over millions of years, with some types of molecules breaking down faster than others. However, traces of biological material have been found inside some fossils. While some researchers believe these could be the remains of ancient proteins, blood vessels, and cells, traditionally thought to be among the least stable components of bone, others think that they have more recent sources. One hypothesis is that they are in fact biofilms formed by bacteria.

To investigate the source of the biological material in fossil bone, Saitta et al. performed a range of analyses on the fossilized bones of a horned dinosaur called Centrosaurus. The bones were carefully excavated in a manner to reduce contamination, and the sediment the bones had been embedded in was also tested for comparison. Saitta et al. found no evidence of ancient dinosaur proteins. However, the fossils contained more organic carbon, DNA, and certain amino acids than the sediment surrounding them. Most of these appeared to have a very recent source.

Sequencing the genetic material revealed that the fossil had become a habitat for an unusual community of microbes that is not found in the surrounding sediment or above ground. These buried microbes may have evolved unique ways to thrive inside fossils. Future work could investigate how these unusual organisms live and whether the communities vary in different parts of the world.