How tardigrades survive the extreme

The Dsup protein binds chromatin to protect tardigrades from the harmful effects of X-rays.
Digest
  • Views 5,264
  • Annotations

A tardigrade imaged using scanning electron microscopy. Image credit: Schokraie, Warnken, Hotz-Wagenblatt, Grohme, Hengherr et al. (CC BY 2.5)

Tardigrades, also known as water bears and moss piglets, are small animals found in many different environments on land and sea. These animals have the remarkable ability to survive extremes including very low temperatures, high levels of radiation and exposure to chemicals that are harmful to other forms of life. Tardigrades have even been found to survive the harsh conditions of outer space.

X-rays are a type of radiation naturally produced by lightning strikes and are also found in cosmic rays from outer space. High doses of X-rays can cause genetic mutations that may lead to serious illness or death. This is because when X-rays come into contact with water they split the water molecules to make particles known as hydroxyl radicals, which in turn damage the DNA inside cells.

The genomes of animals and plants are made of DNA, which is packaged into a structure called chromatin. Previous studies identified a protein named Dsup in a tardigrade called Ramazzottius varieornatus that can protect human cells from damage by X-rays. However, it was not known whether Dsup binds directly to chromatin or plays a more indirect role in protecting DNA.

Chavez, Cruz-Becerra, Fei, Kassavetis et al. used biochemical approaches to study Dsup. Their experiments revealed that Dsup from R. varieornatus binds to chromatin to protect the DNA from damage by hydroxyl radicals, and that the Dsup protein in another tardigrade species also works in a similar way. Further analysis showed that a region of Dsup that is needed to bind to chromatin is very similar to a region that had been previously found only in chromatin-binding proteins from humans and other vertebrates (animals with backbones). This connection between Dsup and vertebrate chromatin-binding proteins remains a mystery.

The new findings about tardigrade Dsup may help researchers develop animal cells that live longer under normal or extreme environmental conditions. In this manner, Dsup could be used to expand the range of applications of cells in biotechnology. It could also increase the effectiveness of current methods, such as the production of some pharmaceuticals, that depend upon the use of cultured cells.