How a moth knows where to lay its eggs

Tobacco budworm moths have receptors in their egg-laying organs that detect odorants produced by their host plants.
Digest
  • Views 694
  • Annotations

The egg-laying organ, or ovipositor, of Helicoverpa assulta. Image credit: Ling-Qiao Huang (CC BY 4.0)

When most insects reproduce they lay eggs that hatch into juveniles known as larvae. To provide good sources of food for the larvae, the adult insects have to carefully select where to lay the eggs. Host plants produce specific sets of chemicals known as odorants that the adult insects are able to smell using proteins called odorant receptors.

It is generally thought that odorant receptors in the antennae on the head are responsible for guiding adult insects to good egg-laying sites. However, recent studies have reported that odorant receptors are also present in the egg-laying organs of several different species of moth. It remains unclear what role these odorant receptors may play in egg-laying.

The oriental tobacco budworm (Helicoverpa assulta) is considered a serious pest in agriculture. The adult moths lay their eggs on a narrow range of plants in the nightshade family including tobacco and hot pepper. Li et al. have now investigated the odorant receptors of H. assulta and found that one gene for an odorant receptor called HassOR31 was expressed much more in the egg-laying organs of the moths than in the antennae. Further experiments showed that this receptor was tuned to respond to 12 odorants that also stimulated responses in the egg-laying organ of H. assulta. Together these findings suggest that this odorant receptor in the egg-laying organ helps the moths find suitable host plants to lay their eggs on.

The work of Li et al. may help us understand how H. assulta evolved to lay its eggs on specific members of the nightshade family and lead to new methods of controlling this pest. An insect’s sense of smell guides many other behaviors including finding food, mates and avoiding enemies. Therefore, these findings may inspire researchers to investigate whether odorant receptors in the antennae or other organs guide these behaviors.