Drug resistant bacteria pose a major threat to public health systems all over the world. Darwinian evolution is at the heart of this drug resistance: a mutation that allows bacteria to divide in the presence of a drug appears initially in a single cell. This mutation makes this cell and its descendants more likely to survive, so they can end up taking over the population.
The evolution of resistance can be thought of in terms of ‘bacterial fitness landscapes’. These landscapes visualise the relationship between the mutations present in a population of bacteria and how quickly the bacteria divide or reproduce. They are called landscapes because they can be represented as a series of mountains and valleys. The peaks of this landscape represent combinations of mutations that give bacteria the greatest chance of dividing (the greatest fitness). In a landscape with multiple peaks, some peaks will be higher than others. If the landscape is smooth, bacteria can easily acquire mutations for drug resistance. However, in a rugged landscape, bacteria may get stuck at sub-optimal peaks, because the mutations that would enable them to reach a higher peak would first lead them to losing fitness.
Several studies on the evolution of antibiotic resistance exist for specific bacteria and specific drugs, but relatively little is known about the general properties of the underlying fitness landscapes. Do these landscapes have features that can help explain the rapid evolution of high levels of resistance?
Antibiotic resistance often comes at a cost – more resistant strains of bacteria tend to grow more slowly when the drug is absent. To build a model of antibiotic resistance landscapes, Das et al. performed growth experiments on several strains of Escherichia coli exposed to a drug called ciprofloxacin. They measured how the rate at which the bacteria divided changed at different antibiotic concentrations, and combined this with the observation about resistant strains growing slower to formulate a mathematical model of antibiotic resistance landscapes. The landscapes that resulted were found to be very rugged, but unexpectedly, the bacteria could still evolve to access all fitness peaks. This means that landscape ruggedness does not constrain the evolution of resistance.
Understanding how and when resistance evolves is important both for the design of new drugs and the development of treatment protocols. A specific prediction of the model is that resistance evolution in fitness landscapes where resistant strains divide more slowly is reversible. This implies that the bacteria could regain their susceptibility to treatment when the drug concentration decreases, but this would depend on the specific bacteria and drug in question. More broadly, the model provides a framework for addressing the evolution of resistance in clinical and environmental settings, where drug concentrations vary widely in time and space.