Associative learning is a simple learning ability found in most animals, which involves linking together two different cues. For example, the dogs in Pavlov’s famous experiment were trained to associate sound with the arrival of food, and eventually started salivating upon hearing the sound alone.
Plants, like animals, are capable of complex behaviors. The snapping leaves of a Venus fly trap or the sun-tracking abilities of sunflowers are examples of instinctive responses to environmental cues that have evolved over many generations. Whether or not plants can learn during their lifetimes has remained unknown.
A handful of studies have tested for associative learning in plants, the most convincing of which was published in 2016. In this study, pea plants were exposed to two signals: light, the plant version of dog food, and wind, equivalent to the sound in Pavlov’s experiment. Just as dogs salivate in response to food, plants instinctively grow towards light, whereas air flow does not affect the direction of growth.
The plants were grown inside Y-shaped mazes and their ‘selection’ of one particular arm was used as a ‘read-out’ of learned behavior. The experiments trained growing plants by exposing them to wind and light from either the same direction or opposite directions. Once the plants were at the point of ‘choosing’ between the two arms, they were exposed to wind in the absence of light. Wind by itself appeared to influence the direction the trained plants took, with wind attracting plants trained with wind and light together and repelling plants trained with wind and light apart. Untrained plants remained unaffected, making random selections.
These observations were interpreted as the strongest evidence of associative learning in plants and if true would have great scientific and philosophical significance. Kasey Markel therefore set out to confirm and expand on these findings by replicating the 2016 study.
As many conditions as possible were kept identical, such as the training regime. The new experiments also used more plants and, most importantly, were done ‘blind’ meaning the people recording the data did not know how the plants had been trained. This ensured the expectations of the researcher would not influence the final results. The new study found no evidence for associative learning, but did not rule it out altogether. This is because some experimental details in the first study remained unknown, such as the exact model of lights and fans originally used.
This work demonstrates the importance of replicating scientific experiments. In the future, Markel hopes their results will pave the way for further, rigorous testing of the hypothesis that plants can learn.