Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21. Affected individuals show delayed growth, characteristic facial features, altered brain development; with mild to severe intellectual disability. The exact mechanisms underlying the intellectual disability in Down syndrome are unclear, although studies in mice have provided clues. Drugs that reduce the inhibitory activity in the brain improve cognition in a mouse model of Down syndrome. This suggests that excessive inhibitory activity may contribute to the cognitive impairments.
Many different neural circuits generate inhibitory activity in the brain. These circuits contain cells called interneurons. Sub-types of interneurons act via different mechanisms to reduce the activity of neurons. Identifying the interneurons that are affected in Down syndrome would thus improve our understanding of the brain basis of the disorder.
Zorrilla de San Martin et al. compared mice with Down syndrome to unaffected control mice. The results revealed an increased activity in two types of inhibitory brain circuits in Down syndrome. The first contains interneurons called Martinotti cells. These help the brain to combine inputs from different sources. The second contains interneurons called parvalbumin-positive basket cells. These help different areas of the brain to synchronize their activity, which in turn makes it easier for those areas to exchange information.
By mapping the changes in inhibitory circuits in Down syndrome, Zorrilla de San Martin et al. have provided new insights into the biological basis of the disorder. Future studies should examine whether targeting specific circuits with pharmacological treatments could ultimately help reduce the associated impairments.