From one founder, two types grow

Digital dissection of an early bony fish fossil reveals new evolutionary relationship between teeth and tooth-like scales.

Image credit: Jakob Owens (CC0)

Human teeth are an example of odontodes: hard structures made of a material called dentine that are sometimes coated in enamel. Teeth are the only odontodes humans have, but other vertebrates (animals with backbones) have tooth-like scales on their skin. These structures are called dermal odontodes, and sharks and rays, for example, are covered with them.

How these structures evolved, and whether teeth or dermal odontodes developed first, continues to spark great discussion among palaeontologists. Some researchers think that teeth evolved from dermal odontodes, a theory known as the ‘scales-to-teeth’ hypothesis. Others think dermal odontodes are distinct from teeth because they lack the same spatial organization. To investigate this further, palaeontologists are looking at the earliest examples of odontodes they can find: fossils of early vertebrates that carry both teeth and dermal odontodes.

Here, Chen et al. have studied Lophosteus, one of the earliest bony fishes that lived more than 400 million years ago, to explore early tooth evolution and growth patterns. Chen et al. digitally dissected a fossilized Lophosteus jawbone using submicron X-ray imaging, a technique with resolution to less than one millionth of a metre. Imaging thin sections of the specimen, found in Estonia, Chen et al. reconstructed the entire sequence of odontode development in the bony fish in 3D.

The analysis showed that teeth and dermal odontodes initially take shape together but differentiate as they grow, presumably instructed to do so by various developmental signals. However, at a later stage, the two types of odontodes become similar in appearance again, suggesting that they respond to each other’s signals. For example, as the jawbone grows, dermal odontodes overgrow the earliest formed teeth. These younger odontodes resemble teeth, while the new teeth developing near the dermal odontodes take after dermal odontodes.

These findings suggest that teeth and dermal odontodes are not wholly separate systems but, instead, are closely related on a molecular level. The results also show that contrary to the ‘scale-to-teeth’ hypothesis, teeth do not evolve from fully formed dermal odontodes, rather the two types of odontodes form out of one founder.

This research builds on our knowledge from modern sharks and points to a previously unrecognised evolutionary relationship between teeth and dermal odontodes. It also furthers our understanding of how molecular regulation controls development.