It takes two (to break down plants)

The enzymes produced by leaf-cutting ants and their symbiotic fungus react with each other to break down the leaves the fungus needs to survive.

Drawing of a leaf-cutting ant releasing fecal liquid. Image credit: Morten Schiøtt (CC BY 4.0)

Colonies of tropical leaf-cutting ants live in underground nests where a fungus grows that feeds them. The ants, in turn, provide the fungus with the freshly-cut leaf fragments it needs for nutrition. The relationship between the ants and the fungus, in which they live close together and help one another survive, is known as symbiosis. It is an ancient, extremely well integrated relationship, in which neither species can survive without the other. However, the details of how the ants and the fungus work together to break down the leaf fragments so they can be used for nutrition are not well understood.

When the ants eat the fungus, they do not digest its enzymes (the proteins that accelerate chemical reactions in a cell). Instead, the fungal enzymes travel through the ants’ gut and into their fecal liquid, which gets deposited on the fresh-cut leaves when the ants collect them. The ants then make temporary pellets out of the new leaf fragments before providing them to the fungus. To better understand how each species contributes to the breakdown of the leaf fragments, Schiøtt and Boomsma identified all the proteins present in the fecal fluid of the ants. Once they had a complete list of about 100 proteins, they determined which of them were produced by the fungus and which by the ant. Schiøtt and Boomsma observed that certain combinations of fungal and ant enzymes could trigger a Fenton reaction – a chemical reaction that efficiently begins the breakdown of the tough walls around plant cells. This reaction is so aggressive that it is rarely found in nature, but it could help explain the high efficiency of the fungus and the ants symbiotically processing leaf fragments.

But could a Fenton reaction actually proceed in the ants’ nest without hurting the ants or affecting the rest of the fungal garden? The evidence obtained suggested that the temporary pellets made by the ants serve to isolate the reaction, so the aggressive chemistry takes place away from the ants and detached from the fungal gardens.

Schiøtt and Boomsma showed that the symbiotic relationship between the ants and the fungus has led to a sustainable and efficient way of breaking down plant materials to use them for nutrition. The Fenton reaction is economically important in many industries, including bioethanol production, the detergent industry, and food production. Emulating the methods used by leaf-cutting ants, which have been fine-tuned by millions of years of natural selection, may allow humans to develop more efficient technologies for breaking down organic compounds.