Crossed wires

Genetic and biochemical experiments reveal how signals during embryonic development instruct nerve cells to reorient and grow in a different direction.
  • Views 115
  • Annotations

A neuron stained with phalloidin to label the actin cytoskeleton (blue). Image credit: Karina Chaudhari (CC BY 4.0)

The brain is the most complex organ in the body. It contains billions of nerve cells, also known as neurons, with trillions of precise and specific connections, but how do these neurons know where to go and which connections to make as the brain grows? Neurons contain a small set of proteins known as guidance receptors. These receptors respond to external signals that can be attractive or repulsive. They instruct neurons to turn towards, or away from, the source of a signal. During embryonic development, neurons use these signals as guideposts to find their way to their destination.

One such guidance receptor-signal pair consists of a receptor called Roundabout, also known as Robo, and its cue, Slit. Robo, which is located on the neuron’s surface, responds to the presence of Slit in the environment, by initiating a set of signalling events that instruct neurons to turn away. Neurons make the turn by rearranging their internal scaffolding, a network of proteins called the actin cytoskeleton. How Robo triggers this rearrangement is unclear. One possibility relies on a group of proteins called the WAVE regulatory complex, or the WRC for short. Researchers have already linked the WRC to nerve cell guidance, showing that it can trigger the growth of new filaments in the actin cytoskeleton. Proteins can activate the WRC by binding to it using a set of amino acids called a WRC-interacting receptor sequence, or WIRS for short, which Robo has.

Chaudhari et al. used fruit flies to find out how Robo and the WRC interact. The experiments revealed that when Slit binds to Robo on the outside of a nerve cell, the WRC binds to Robo via its WIRS sequence on the inside of the cell. This attracts proteins inside the cell involved in rearranging the actin cytoskeleton. Disrupting this interaction by mutating either WRC or WIRS leads to severe errors in pathfinding, because when the WRC cannot connect to Robo, neurons cannot find their way. Experiments in mouse and chicken embryos showed that vertebrates use the WIRS sequence too, indicating that evolution has conserved this method of passing signals from Robo to the cytoskeleton.

The fact that Slit and Robo work in the same way across fruit flies and vertebrates has implications for future medical research. Further work could explain how the brain and nervous system develop, and what happens when development goes wrong, but Slit and Robo control more than just nerve cell pathfinding. Research has linked disruptions in both proteins to many types of cancer, so a better understanding of how Robo interacts with the WRC could lead to new developments in different fields.