Insect neuroscience, like any field in the natural sciences, generates vast amounts of data. Currently, only a fraction are publicly available, and even less are reusable. This is because insect neuroscience data come in many formats and from many species. Some experiments focus on what insect brains look like (morphology), while others focus on how insect brains work (function). Some data come in the form of high-speed video, while other data contain voltage traces from individual neurons. Sharing is not as simple as uploading the raw files to the internet.
To get a clear picture of how insect brains work, researchers need a way to cross-reference and connect different experiments. But, as it stands, there is no dedicated place for insect neuroscientists to share and explore such a diverse body of work. The community needs an open data repository that can link different types of data across many species, and can evolve as more data become available. Above all, this repository needs to be easy for researchers to use.
To meet these specifications, Heinze et al. developed the Insect Brain Database. The database organizes data into three categories: species, brain structures, and neuron types. Within these categories, each entry has its own profile page. These pages bring different experiments together under one heading, allowing researchers to combine and compare data of different types. As researchers add more experiments, the profile pages will grow and evolve. To make the data easy to navigate, Heinze et al. developed a visual search tool. A combination of 2D and 3D images allow users to explore the data by anatomical location, without the need for expert knowledge. Researchers also have the option to upload their work in private mode, allowing them to securely share unpublished data.
The Insect Brain Database brings data together in a way that is accessible not only to researchers, but also to students, and non-scientists. It will help researchers to find related work, to reuse existing data, and to build an open data culture. This has the potential to drive new discoveries combining research across the whole of the insect neuroscience field.