Deciphering the languages of bacteria

An analysis of signaling proteins provides new insights into how bacteria evolve to discriminate their own signals from those of other bacterial species.

Scanning electron micrograph (SEM) of a number of Pseudomonas aeruginosa bacteria. Image credit: Janice Haney Carr, CDC (CC BY-NC-SA 2.0)

Communication is vital in any community and it is no different for bacteria. Some of the microbes living in bacterial communities are closely related to one another and can help each other survive and grow. They do this by releasing chemical signals that coordinate their behaviors, including those that are damaging to the infected host.

A key aspect of this coordination is knowing how many related bacteria are present in a given environment. In a process known as quorum sensing, the bacteria release a chemical signal which neighboring sibling bacteria detect and respond to. The larger the population of bacteria, the more the signal accumulates. At a certain threshold, the signal activates the genes needed to trigger a coordinated action, such as producing toxins or antibiotics. Many bacteria communicate using acylhomoserine lactone signaling systems, which involve different signals depending on the species of bacteria. But it is unclear how this diversity evolved, and how bacteria can distinguish between signals from related and unrelated bacterial cells.

To understand this, Wellington Miranda et al. used computational techniques to analyze how the proteins responsible for acylhomoserine lactone signaling coevolved. The analysis identified specific parts of these proteins that determine which signal will be produced and which will trigger a bacterium into action. Wellington Miranda et al. then used these insights to engineer the bacteria Pseudomonas aeruginosa to produce and respond to a signal that is naturally made by another bacterial species.

These computational methods could be used to analyze other proteins that have coevolved but do not physically interact. Within the area of quorum sensing, this approach will help to better understand the costs and benefits of signal selectivity. This may help to predict bacterial interactions and therefore behaviors during infections.