
Mouse from the Bavarian Mus musculus musculus – M. m. domesticus hybrid zone, perched on a beer stein. Image credit: Leslie Turner (CCBY 4.0)
The digestive system, particularly the large intestine, hosts many types of bacteria which together form the gut microbiome. The exact makeup of different bacterial species is specific to an individual, but microbiomes are often more similar between related individuals, and more generally, across related species. Whether this is because individuals share similar environments or similar genetic backgrounds remains unclear. These two factors can be disentangled by breeding different animal lineages – which have different genetic backgrounds while belonging to the same species – and then raising the progeny in the same environment.
To investigate this question, Doms et al. studied the genes and microbiomes of mice resulting from breeding strains from multiple locations in a natural hybrid zone between different subspecies. The experiments showed that 428 genetic regions affected the makeup of the microbiome, many of which were known to be associated with human diseases. Further analysis revealed 79 genes that were particularly interesting, as they were involved in recognition and communication with bacteria. These results show how the influence of the host genome on microbiome composition becomes more specialized as animals evolve.
Overall, the work by Doms et al. helps to pinpoint the genes that impact the microbiome; this knowledge could be helpful to examine how these interactions contribute to the emergence of conditions such as diabetes or inflammatory bowel disease, which are linked to perturbations in gut bacteria.