Investing in the next generation

Western honey bee queens change the size of their eggs depending on the environment of the colony they are living in.

Image showing a queen in a honey bee colony laying eggs. Image credit: Esmaeil Amiri (CC BY 4.0)

Honey bees are social insects that live in large colonies containing tens of thousands of individuals. The vast majority of bees are sterile females known as worker bees. They perform most of the activities essential for the survival of the colony, including foraging for pollen and nectar and taking care of eggs and larvae.

An individual known as the queen bee is the mother of the colony and is normally the only female who reproduces. She has two massive ovaries and can produce up to two thousand eggs per day. Previous studies indicate that the number and size of the eggs vary according to the conditions inside the colony and in the surrounding environment. Larger eggs contain more nutrients so the resulting embryos may have a better chance of survival. However, producing bigger eggs requires the queen to invest more resources, which is costly to the colony as a whole.

It remains unclear which mechanisms regulate the size of honey bee eggs. To address this question, Han, Wei, Amiri et al. carried out a series of experiments on the Western honey bee, Apis mellifera. The experiments showed that queen bees in small colonies had smaller ovaries and produced bigger eggs than those in large colonies. The difference in egg size appeared to be due to the queen bee’s perception of the size of the colony, rather than its actual size.

An approach called proteomics revealed that 290 ovarian proteins were produced at different levels in big-egg producing ovaries compared to small-egg producing ovaries. Further experiments suggested that a protein known as Rho1 regulates the size of the eggs the queen bees produce.

These findings provide an explanation for how the social environment of the Western honey bee colony may influence the queen bee’s reproductive investment at the molecular level. Further studies to confirm and expand on this work may help to improve honey bee health and also contribute to our general understanding of this life stage in bees and other insects.