Fishing for answers

Zebrafish can grow brain tumors that resemble human tumors, allowing scientists to study how these deadly cancers develop and interact with the immune system.

Microscopy image of immune cells (macrophages, green) infiltrating a zebrafish glioblastoma tumor (magenta). Image credit: Alexander Weiss (CC BY 4.0)

Glioblastoma is the most common and deadly type of brain cancer in adults. Fewer than 7% of patients survive for more than five years after diagnosis. This poor prognosis for patients with glioblastoma has not significantly improved for decades.

The standard treatment for glioblastoma consists of surgery, radiotherapy and the same chemotherapy that has been prescribed for twenty years. This suggests that there is still much to learn about glioblastoma and how better to treat it. Scientists use various laboratory models to mimic human disease. They can study human glioblastoma cells grown in the laboratory or transplanted into mice, and they can also use genetically engineered mice that develop brain tumors from their own tissue.

These systems provide valuable information about glioblastoma, but each model has certain drawbacks. For example, glioblastoma cells in a dish do not grow in an environment containing other types of cells found in the body, such as immune cells. And although studying glioblastoma in mice bypasses this problem, such experiments often take years to perform and are very expensive.

To address these limitations, Weiss et al. asked whether introducing some of the same genetic mutations that cause glioblastoma in humans could lead to brain tumors in zebrafish. Zebrafish have multiple advantages as models of human disease: they are inexpensive to maintain and have a rapid life cycle, they are relatively easy to manipulate using various genetic tools, and they are transparent so that the growth of tumors can be filmed.

Weiss et al. expressed mutant versions of genes found in many patients with glioblastoma in the brains of developing zebrafish. These zebrafish rapidly developed tumor-like growths and detailed analyses confirmed that these tumors highly resembled human glioblastomas. Zebrafish glioblastomas contained active immune cells in addition to the cancer cells and showed signs of being inflamed.

Weiss et al. filmed interactions between immune cells and cancer cells in zebrafish brains. They noted that specific immune cells called macrophages (commonly known to destroy certain disease-causing pathogens like bacteria) had pieces of tumors inside them. This and other evidence suggested that these macrophages counteracted the growth of tumors by potentially engulfing (or ‘eating’) glioblastoma cells during the early stages of tumor development.

Altogether, these experiments indicate that zebrafish containing specific genes that cause glioblastoma in humans can mimic disease in many respects. Future studies will build on this work by testing other genes and further studying interactions between immune cells and cancer cells in the animal body.