All living things use molecules known as nucleic acids to store instructions on how to grow and maintain themselves and pass these instructions down to the next generation. However, it remains unclear how these systems may have evolved from simple molecules in the environment when life began over 3.6 billion years ago.
One idea proposes that, before the first cells evolved, abiotic chemical processes gave rise to substantial building blocks of ribonucleic acids (or RNAs, for short). Over time, RNAs could have combined to form polymers of random sequences that started to copy themselves to make simple machines, only carrying the information required to make more of the same RNAs. Later on, these RNA molecules teamed up with proteins, fats and other molecules to make the first cells.
When RNA replicates, the parent molecule is used as a template to assemble a new copy. While the new RNA molecule remains attached to its template it prevents the template being used to make more RNA. Therefore, it is thought that the speed at which a specific RNA machine copied itself may have varied in a pattern known as parabolic growth. Furthermore, when RNA replicates without the help of other biological molecules, the process is very prone to errors, which would have severely limited how much information the RNA machines were able to pass on to the next generation.
Theoretical work suggested that under certain conditions, parabolic growth may favor the maintenance of a large amount of RNA sequence-coded information, but it is not clear if this is actually possible in nature. To address this question, Paczkó et al. developed mathematical models to investigate the effect of parabolic growth on the ability of RNA to replicate without other biological molecules. The models show that when large numbers of RNAs are present, small differences in how quickly different RNAs replicated favored the stable coexistence of different RNA sequences. Parabolic growth decreased the adverse effect of copying errors, allowing larger pieces of RNA to faithfully replicate themselves.
This work suggests that parabolic growth may help to maintain different types of RNA (or similar replicating molecules) in a population and in turn, help new simple life forms to evolve. In the future, these findings may be used as a framework for laboratory experiments to better understand how early life forms may have evolved.